
Python Serverless Microframework for
AWS

Release 1.15.1

Jun 16, 2020

Contents

1 Quickstart and Tutorial 3
1.1 Credentials . 3
1.2 Creating Your Project . 4
1.3 Deploying . 4
1.4 Next Steps . 5

2 Tutorial: URL Parameters 7

3 Tutorial: Error Messages 9

4 Tutorial: Additional Routing 11

5 Tutorial: Request Metadata 13

6 Tutorial: Request Content Types 17

7 Tutorial: Customizing the HTTP Response 19

8 Tutorial: GZIP compression for json 21

9 Tutorial: CORS Support 23

10 Tutorial: Policy Generation 25
10.1 Manually Providing Policies . 26
10.2 Experimental Status . 27

11 Tutorial: Using Custom Authentication 29
11.1 API Key . 29
11.2 Using AWS IAM . 29
11.3 Using Amazon Cognito User Pools . 29
11.4 Using Custom Authorizers . 30

12 Tutorial: Local Mode 31

13 Deleting Your App 33

14 Topics 35
14.1 Routing . 35
14.2 Views . 37
14.3 Configuration File . 41

i

14.4 Multifile Support . 48
14.5 Logging . 49
14.6 SDK Generation . 51
14.7 Chalice Stages . 53
14.8 App Packaging . 55
14.9 Python Version Support . 58
14.10 Changing Python Runtime Versions . 59
14.11 AWS CloudFormation Support . 59
14.12 Terraform Support . 63
14.13 Authorization . 65
14.14 Lambda Event Sources . 68
14.15 Pure Lambda Functions . 72
14.16 Blueprints . 73
14.17 Websockets . 76
14.18 Continuous Deployment (CD) . 78
14.19 Experimental APIs . 80

15 API Reference 83
15.1 Chalice . 83
15.2 Request . 88
15.3 Response . 89
15.4 Authorization . 89
15.5 APIGateway . 91
15.6 WebsocketAPI . 92
15.7 CORS . 93
15.8 Event Sources . 94
15.9 Blueprints . 98
15.10 Websockets . 98

16 Tutorials 101
16.1 Websocket Tutorials . 101

17 Upgrade Notes 121
17.1 Upgrade Notes . 121
17.2 Indices and tables . 127

ii

Python Serverless Microframework for AWS, Release 1.15.1

AWS Chalice allows you to quickly create and deploy applications that use Amazon API Gateway and AWS Lambda.
It provides:

• A command line tool for creating, deploying, and managing your app

• A familiar and easy to use API for declaring views in python code

• Automatic IAM policy generation

$ pip install chalice
$ chalice new-project helloworld && cd helloworld
$ cat app.py

from chalice import Chalice

app = Chalice(app_name="helloworld")

@app.route("/")
def index():

return {"hello": "world"}

$ chalice deploy
...
https://endpoint/dev

$ curl https://endpoint/api
{"hello": "world"}

Up and running in less than 30 seconds.

Contents 1

Python Serverless Microframework for AWS, Release 1.15.1

2 Contents

CHAPTER 1

Quickstart and Tutorial

In this tutorial, you’ll use the chalice command line utility to create and deploy a basic REST API. This quick-
start uses Python 3.7, but AWS Chalice supports all versions of python supported by AWS Lambda, which includes
python2.7, python3.6, python3.7, python3.8. We recommend you use a version of Python 3. You can find the latest
versions of python on the Python download page.

To install Chalice, we’ll first create and activate a virtual environment in python3.7:

$ python3 --version
Python 3.7.3
$ python3 -m venv venv37
$. venv37/bin/activate

Next we’ll install Chalice using pip:

$ python3 -m pip install chalice

You can verify you have chalice installed by running:

$ chalice --help
Usage: chalice [OPTIONS] COMMAND [ARGS]...
...

1.1 Credentials

Before you can deploy an application, be sure you have credentials configured. If you have previously configured your
machine to run boto3 (the AWS SDK for Python) or the AWS CLI then you can skip this section.

If this is your first time configuring credentials for AWS you can follow these steps to quickly get started:

$ mkdir ~/.aws
$ cat >> ~/.aws/config
[default]
aws_access_key_id=YOUR_ACCESS_KEY_HERE
aws_secret_access_key=YOUR_SECRET_ACCESS_KEY
region=YOUR_REGION (such as us-west-2, us-west-1, etc)

If you want more information on all the supported methods for configuring credentials, see the boto3 docs.

3

https://www.python.org/downloads/
http://boto3.readthedocs.io/en/latest/guide/configuration.html

Python Serverless Microframework for AWS, Release 1.15.1

1.2 Creating Your Project

The next thing we’ll do is use the chalice command to create a new project:

$ chalice new-project helloworld

This will create a helloworld directory. Cd into this directory. You’ll see several files have been created for you:

$ cd helloworld
$ ls -la
drwxr-xr-x .chalice
-rw-r--r-- app.py
-rw-r--r-- requirements.txt

You can ignore the .chalice directory for now, the two main files we’ll focus on is app.py and
requirements.txt.

Let’s take a look at the app.py file:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():

return {'hello': 'world'}

The new-project command created a sample app that defines a single view, /, that when called will return the
JSON body {"hello": "world"}.

1.3 Deploying

Let’s deploy this app. Make sure you’re in the helloworld directory and run chalice deploy:

$ chalice deploy
...
Initiating first time deployment...
https://qxea58oupc.execute-api.us-west-2.amazonaws.com/api/

You now have an API up and running using API Gateway and Lambda:

$ curl https://qxea58oupc.execute-api.us-west-2.amazonaws.com/api/
{"hello": "world"}

Try making a change to the returned dictionary from the index() function. You can then redeploy your changes by
running chalice deploy.

For the rest of these tutorials, we’ll be using httpie instead of curl (https://github.com/jakubroztocil/httpie) to
test our API. You can install httpie using pip install httpie, or if you’re on Mac, you can run brew
install httpie. The Github link has more information on installation instructions. Here’s an example of using
httpie to request the root resource of the API we just created. Note that the command name is http:

$ http https://qxea58oupc.execute-api.us-west-2.amazonaws.com/api/
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 18

4 Chapter 1. Quickstart and Tutorial

https://github.com/jakubroztocil/httpie

Python Serverless Microframework for AWS, Release 1.15.1

Content-Type: application/json
Date: Mon, 30 May 2016 17:55:50 GMT
X-Cache: Miss from cloudfront

{
"hello": "world"

}

Additionally, the API Gateway endpoints will be shortened to https://endpoint/api/
for brevity. Be sure to substitute https://endpoint/api/ for the actual endpoint
that the chalice CLI displays when you deploy your API (it will look something like
https://abcdefg.execute-api.us-west-2.amazonaws.com/api/.

1.4 Next Steps

You’ve now created your first app using chalice.

The next few sections will build on this quickstart section and introduce you to additional features including: URL
parameter capturing, error handling, advanced routing, current request metadata, and automatic policy generation.

1.4. Next Steps 5

Python Serverless Microframework for AWS, Release 1.15.1

6 Chapter 1. Quickstart and Tutorial

CHAPTER 2

Tutorial: URL Parameters

Now we’re going to make a few changes to our app.py file that demonstrate additional capabilities provided by the
python serverless microframework for AWS.

Our application so far has a single view that allows you to make an HTTP GET request to /. Now let’s suppose we
want to capture parts of the URI:

from chalice import Chalice

app = Chalice(app_name='helloworld')

CITIES_TO_STATE = {
'seattle': 'WA',
'portland': 'OR',

}

@app.route('/')
def index():

return {'hello': 'world'}

@app.route('/cities/{city}')
def state_of_city(city):

return {'state': CITIES_TO_STATE[city]}

In the example above, we’ve now added a state_of_city view that allows a user to specify a city name. The
view function takes the city name and returns name of the state the city is in. Notice that the @app.route decorator
has a URL pattern of /cities/{city}. This means that the value of {city} is captured and passed to the view
function. You can also see that the state_of_city takes a single argument. This argument is the name of the city
provided by the user. For example:

GET /cities/seattle --> state_of_city('seattle')
GET /cities/portland --> state_of_city('portland')

Now that we’ve updated our app.py file with this new view function, let’s redeploy our application. You can run
chalice deploy from the helloworld directory and it will deploy your application:

$ chalice deploy

Let’s try it out. Note the examples below use the http command from the httpie package. You can install this
using pip install httpie:

$ http https://endpoint/api/cities/seattle
HTTP/1.1 200 OK

7

Python Serverless Microframework for AWS, Release 1.15.1

{
"state": "WA"

}

$ http https://endpoint/api/cities/portland
HTTP/1.1 200 OK

{
"state": "OR"

}

Notice what happens if we try to request a city that’s not in our CITIES_TO_STATE map:

$ http https://endpoint/api/cities/vancouver
HTTP/1.1 500 Internal Server Error
Content-Type: application/json
X-Cache: Error from cloudfront

{
"Code": "ChaliceViewError",
"Message": "ChaliceViewError: An internal server error occurred."

}

In the next section, we’ll see how to fix this and provide better error messages.

8 Chapter 2. Tutorial: URL Parameters

CHAPTER 3

Tutorial: Error Messages

In the example above, you’ll notice that when our app raised an uncaught exception, a 500 internal server error was
returned.

In this section, we’re going to show how you can debug and improve these error messages.

The first thing we’re going to look at is how we can debug this issue. By default, debugging is turned off, but you can
enable debugging to get more information:

from chalice import Chalice

app = Chalice(app_name='helloworld')
app.debug = True

The app.debug = True enables debugging for your app. Save this file and redeploy your changes:

$ chalice deploy
...
https://endpoint/api/

Now, when you request the same URL that returned an internal server error, you’ll get back the original stack trace:

$ http https://endpoint/api/cities/vancouver
Traceback (most recent call last):

File "/var/task/chalice/app.py", line 304, in _get_view_function_response
response = view_function(*function_args)

File "/var/task/app.py", line 18, in state_of_city
return {'state': CITIES_TO_STATE[city]}

KeyError: u'vancouver'

We can see that the error is caused from an uncaught KeyError resulting from trying to access the vancouver key.

Now that we know the error, we can fix our code. What we’d like to do is catch this exception and instead return a
more helpful error message to the user. Here’s the updated code:

from chalice import BadRequestError

@app.route('/cities/{city}')
def state_of_city(city):

try:
return {'state': CITIES_TO_STATE[city]}

except KeyError:
raise BadRequestError("Unknown city '%s', valid choices are: %s" % (

city, ', '.join(CITIES_TO_STATE.keys())))

Save and deploy these changes:

9

Python Serverless Microframework for AWS, Release 1.15.1

$ chalice deploy
$ http https://endpoint/api/cities/vancouver
HTTP/1.1 400 Bad Request

{
"Code": "BadRequestError",
"Message": "Unknown city 'vancouver', valid choices are: portland, seattle"

}

We can see now that we have received a Code and Message key, with the message being the value we passed to
BadRequestError. Whenever you raise a BadRequestError from your view function, the framework will
return an HTTP status code of 400 along with a JSON body with a Code and Message. There are a few additional
exceptions you can raise from your python code:

* BadRequestError - return a status code of 400

* UnauthorizedError - return a status code of 401

* ForbiddenError - return a status code of 403

* NotFoundError - return a status code of 404

* ConflictError - return a status code of 409

* UnprocessableEntityError - return a status code of 422

* TooManyRequestsError - return a status code of 429

* ChaliceViewError - return a status code of 500

You can import these directly from the chalice package:

from chalice import UnauthorizedError

10 Chapter 3. Tutorial: Error Messages

CHAPTER 4

Tutorial: Additional Routing

So far, our examples have only allowed GET requests. It’s actually possible to support additional HTTP methods.
Here’s an example of a view function that supports PUT:

@app.route('/resource/{value}', methods=['PUT'])
def put_test(value):

return {"value": value}

We can test this method using the http command:

$ http PUT https://endpoint/api/resource/foo
HTTP/1.1 200 OK

{
"value": "foo"

}

Note that the methods kwarg accepts a list of methods. Your view function will be called when any of the HTTP
methods you specify are used for the specified resource. For example:

@app.route('/myview', methods=['POST', 'PUT'])
def myview():

pass

The above view function will be called when either an HTTP POST or PUT is sent to /myview.

Alternatively if you do not want to share the same view function across multiple HTTP methods for the same route
url, you may define separate view functions to the same route url but have the view functions differ by HTTP method.
For example:

@app.route('/myview', methods=['POST'])
def myview_post():

pass

@app.route('/myview', methods=['PUT'])
def myview_put():

pass

This setup will route all HTTP POST’s to /myview to the myview_post() view function and route all HTTP
PUT’s to /myview to the myview_put() view function. It is also important to note that the view functions must
have unique names. For example, both view functions cannot be named myview().

In the next section we’ll go over how you can introspect the given request in order to differentiate between various
HTTP methods.

11

Python Serverless Microframework for AWS, Release 1.15.1

12 Chapter 4. Tutorial: Additional Routing

CHAPTER 5

Tutorial: Request Metadata

In the examples above, you saw how to create a view function that supports an HTTP PUT request as well as a view
function that supports both POST and PUT via the same view function. However, there’s more information we might
need about a given request:

• In a PUT/POST, you frequently send a request body. We need some way of accessing the contents of the request
body.

• For view functions that support multiple HTTP methods, we’d like to detect which HTTP method was used so
we can have different code paths for PUTs vs. POSTs.

All of this and more is handled by the current request object that the chalice library makes available to each view
function when it’s called.

Let’s see an example of this. Suppose we want to create a view function that allowed you to PUT data to an object and
retrieve that data via a corresponding GET. We could accomplish that with the following view function:

from chalice import NotFoundError

OBJECTS = {
}

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def myobject(key):

request = app.current_request
if request.method == 'PUT':

OBJECTS[key] = request.json_body
elif request.method == 'GET':

try:
return {key: OBJECTS[key]}

except KeyError:
raise NotFoundError(key)

Save this in your app.py file and rerun chalice deploy. Now, you can make a PUT request to
/objects/your-key with a request body, and retrieve the value of that body by making a subsequent GET request
to the same resource. Here’s an example of its usage:

First, trying to retrieve the key will return a 404.
$ http GET https://endpoint/api/objects/mykey
HTTP/1.1 404 Not Found

{
"Code": "NotFoundError",
"Message": "mykey"

}

13

Python Serverless Microframework for AWS, Release 1.15.1

Next, we'll create that key by sending a PUT request.
$ echo '{"foo": "bar"}' | http PUT https://endpoint/api/objects/mykey
HTTP/1.1 200 OK

null

And now we no longer get a 404, we instead get the value we previously
put.
$ http GET https://endpoint/api/objects/mykey
HTTP/1.1 200 OK

{
"mykey": {

"foo": "bar"
}

}

You might see a problem with storing the objects in a module level OBJECTS variable. We address this in the next
section.

The app.current_request object also has the following properties.

• current_request.query_params - A dict of the query params for the request.

• current_request.headers - A dict of the request headers.

• current_request.uri_params - A dict of the captured URI params.

• current_request.method - The HTTP method (as a string).

• current_request.json_body - The parsed JSON body (json.loads(raw_body))

• current_request.raw_body - The raw HTTP body as bytes.

• current_request.context - A dict of additional context information

• current_request.stage_vars - Configuration for the API Gateway stage

Don’t worry about the context and stage_vars for now. We haven’t discussed those concepts yet. The
current_request object also has a to_dict method, which returns all the information about the current re-
quest as a dictionary. Let’s use this method to write a view function that returns everything it knows about the request:

@app.route('/introspect')
def introspect():

return app.current_request.to_dict()

Save this to your app.py file and redeploy with chalice deploy. Here’s an example of hitting the
/introspect URL. Note how we’re sending a query string as well as a custom X-TestHeader header:

$ http 'https://endpoint/api/introspect?query1=value1&query2=value2' 'X-TestHeader: Foo'
HTTP/1.1 200 OK

{
"context": {

"apiId": "apiId",
"httpMethod": "GET",
"identity": {

"accessKey": null,
"accountId": null,
"apiKey": null,
"caller": null,
"cognitoAuthenticationProvider": null,

14 Chapter 5. Tutorial: Request Metadata

Python Serverless Microframework for AWS, Release 1.15.1

"cognitoAuthenticationType": null,
"cognitoIdentityId": null,
"cognitoIdentityPoolId": null,
"sourceIp": "1.1.1.1",
"userAgent": "HTTPie/0.9.3",
"userArn": null

},
"requestId": "request-id",
"resourceId": "resourceId",
"resourcePath": "/introspect",
"stage": "dev"

},
"headers": {

"accept": "*/*",
...
"x-testheader": "Foo"

},
"method": "GET",
"query_params": {

"query1": "value1",
"query2": "value2"

},
"raw_body": null,
"stage_vars": null,
"uri_params": null

}

15

Python Serverless Microframework for AWS, Release 1.15.1

16 Chapter 5. Tutorial: Request Metadata

CHAPTER 6

Tutorial: Request Content Types

The default behavior of a view function supports a request body of application/json. When a request is made
with a Content-Type of application/json, the app.current_request.json_body attribute is auto-
matically set for you. This value is the parsed JSON body.

You can also configure a view function to support other content types. You can do this by specifying the
content_types parameter value to your app.route function. This parameter is a list of acceptable content
types. Here’s an example of this feature:

import sys

from chalice import Chalice
from urllib.parse import urlparse, parse_qs

app = Chalice(app_name='helloworld')

@app.route('/', methods=['POST'],
content_types=['application/x-www-form-urlencoded'])

def index():
parsed = parse_qs(app.current_request.raw_body.decode())
return {

'states': parsed.get('states', [])
}

There’s a few things worth noting in this view function. First, we’ve specified that we only ac-
cept the application/x-www-form-urlencoded content type. If we try to send a request with
application/json, we’ll now get a 415 Unsupported Media Type response:

$ http POST https://endpoint/api/ states=WA states=CA --debug
...
>>> requests.request(**{'allow_redirects': False,
'headers': {'Accept': 'application/json',

'Content-Type': 'application/json',
...

HTTP/1.1 415 Unsupported Media Type

{
"message": "Unsupported Media Type"

}

If we use the --form argument, we can see the expected behavior of this view function because httpie sets the

17

Python Serverless Microframework for AWS, Release 1.15.1

Content-Type header to application/x-www-form-urlencoded:

$ http --form POST https://endpoint/api/formtest states=WA states=CA --debug
...
>>> requests.request(**{'allow_redirects': False,
'headers': {'Content-Type': 'application/x-www-form-urlencoded; charset=utf-8',

...

HTTP/1.1 200 OK
{

"states": [
"WA",
"CA"

]
}

The second thing worth noting is that app.current_request.json_body is only available for the applica-
tion/json content type. In our example above, we used app.current_request.raw_body to access the raw
body bytes:

parsed = parse_qs(app.current_request.raw_body)

app.current_request.json_body is set to None whenever the Content-Type is not
application/json. This means that you will need to use app.current_request.raw_body and
parse the request body as needed.

18 Chapter 6. Tutorial: Request Content Types

CHAPTER 7

Tutorial: Customizing the HTTP Response

The return value from a chalice view function is serialized as JSON as the response body returned back to the caller.
This makes it easy to create rest APIs that return JSON response bodies.

Chalice allows you to control this behavior by returning an instance of a chalice specific Response class. This
behavior allows you to:

• Specify the status code to return

• Specify custom headers to add to the response

• Specify response bodies that are not application/json

Here’s an example of this:

from chalice import Chalice, Response

app = Chalice(app_name='custom-response')

@app.route('/')
def index():

return Response(body='hello world!',
status_code=200,
headers={'Content-Type': 'text/plain'})

This will result in a plain text response body:

$ http https://endpoint/api/
HTTP/1.1 200 OK
Content-Length: 12
Content-Type: text/plain

hello world!

19

Python Serverless Microframework for AWS, Release 1.15.1

20 Chapter 7. Tutorial: Customizing the HTTP Response

CHAPTER 8

Tutorial: GZIP compression for json

The return value from a chalice view function is serialized as JSON as the response body returned back to the caller.
This makes it easy to create rest APIs that return JSON response bodies.

Chalice allows you to control this behavior by returning an instance of a chalice specific Response class. This
behavior allows you to:

• Add application/json to binary_types

• Specify the status code to return

• Specify custom header Content-Type: application/json

• Specify custom header Content-Encoding: gzip

Here’s an example of this:

import json
import gzip
from chalice import Chalice, Response

app = Chalice(app_name='compress-response')
app.api.binary_types.append('application/json')

@app.route('/')
def index():

blob = json.dumps({'hello': 'world'}).encode('utf-8')
payload = gzip.compress(blob)
custom_headers = {

'Content-Type': 'application/json',
'Content-Encoding': 'gzip'

}
return Response(body=payload,

status_code=200,
headers=custom_headers)

21

Python Serverless Microframework for AWS, Release 1.15.1

22 Chapter 8. Tutorial: GZIP compression for json

CHAPTER 9

Tutorial: CORS Support

You can specify whether a view supports CORS by adding the cors=True parameter to your @app.route() call.
By default this value is False. Global CORS can be set by setting app.api.cors = True.

@app.route('/supports-cors', methods=['PUT'], cors=True)
def supports_cors():

return {}

Setting cors=True has similar behavior to enabling CORS using the AWS Console. This includes:

• Injecting the Access-Control-Allow-Origin: * header to your responses, including all error re-
sponses you can return.

• Automatically adding an OPTIONS method to support preflighting requests.

The preflight request will return a response that includes:

• Access-Control-Allow-Origin: *

• The Access-Control-Allow-Methods header will return a list of all HTTP methods you’ve called out
in your view function. In the example above, this will be PUT,OPTIONS.

• Access-Control-Allow-Headers: Content-Type,X-Amz-Date,Authorization,
X-Api-Key,X-Amz-Security-Token.

If more fine grained control of the CORS headers is desired, set the cors parameter to an instance of CORSConfig
instead of True. The CORSConfig object can be imported from from the chalice package it’s constructor takes
the following keyword arguments that map to CORS headers:

Argument Type Header
allow_origin str Access-Control-Allow-Origin
allow_headers list Access-Control-Allow-Headers
expose_headers list Access-Control-Expose-Headers
max_age int Access-Control-Max-Age
allow_credentials bool Access-Control-Allow-Credentials

Code sample defining more CORS headers:

from chalice import CORSConfig
cors_config = CORSConfig(

allow_origin='https://foo.example.com',
allow_headers=['X-Special-Header'],
max_age=600,
expose_headers=['X-Special-Header'],
allow_credentials=True

)

23

Python Serverless Microframework for AWS, Release 1.15.1

@app.route('/custom-cors', methods=['GET'], cors=cors_config)
def supports_custom_cors():

return {'cors': True}

There’s a couple of things to keep in mind when enabling cors for a view:

• An OPTIONS method for preflighting is always injected. Ensure that you don’t have OPTIONS in the
methods=[...] list of your view function.

• Even though the Access-Control-Allow-Origin header can be set to a string that is a space separated
list of origins, this behavior does not work on all clients that implement CORS. You should only supply a single
origin to the CORSConfig object. If you need to supply multiple origins you will need to define a custom han-
dler for it that accepts OPTIONS requests and matches the Origin header against a whitelist of origins. If the
match is successful then return just their Origin back to them in the Access-Control-Allow-Origin
header.

Example:

from chalice import Chalice, Response

app = Chalice(app_name='multipleorigincors')

_ALLOWED_ORIGINS = set([
'http://allowed1.example.com',
'http://allowed2.example.com',

])

@app.route('/cors_multiple_origins', methods=['GET', 'OPTIONS'])
def supports_cors_multiple_origins():

method = app.current_request.method
if method == 'OPTIONS':

headers = {
'Access-Control-Allow-Method': 'GET,OPTIONS',
'Access-Control-Allow-Origin': ','.join(_ALLOWED_ORIGINS),
'Access-Control-Allow-Headers': 'X-Some-Header',

}
origin = app.current_request.headers.get('origin', '')
if origin in _ALLOWED_ORIGINS:

headers.update({'Access-Control-Allow-Origin': origin})
return Response(

body=None,
headers=headers,

)
elif method == 'GET':

return 'Foo'

• Every view function must explicitly enable CORS support.

The last point will change in the future. See this issue for more information.

24 Chapter 9. Tutorial: CORS Support

https://github.com/aws/chalice/issues/70#issuecomment-248787037

CHAPTER 10

Tutorial: Policy Generation

In the previous section we created a basic rest API that allowed you to store JSON objects by sending the JSON in the
body of an HTTP PUT request to /objects/{name}. You could then retrieve objects by sending a GET request to
/objects/{name}.

However, there’s a problem with the code we wrote:

OBJECTS = {
}

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def myobject(key):

request = app.current_request
if request.method == 'PUT':

OBJECTS[key] = request.json_body
elif request.method == 'GET':

try:
return {key: OBJECTS[key]}

except KeyError:
raise NotFoundError(key)

We’re storing the key value pairs in a module level OBJECTS variable. We can’t rely on local storage like this
persisting across requests.

A better solution would be to store this information in Amazon S3. To do this, we’re going to use boto3, the AWS
SDK for Python. First, install boto3:

$ pip install boto3

Next, add boto3 to your requirements.txt file:

$ pip freeze | grep boto3 >> requirements.txt

The requirements.txt file should be in the same directory that contains your app.py file. Next, let’s update our view
code to use boto3:

import json
import boto3
from botocore.exceptions import ClientError

from chalice import NotFoundError

S3 = boto3.client('s3', region_name='us-west-2')
BUCKET = 'your-bucket-name'

25

Python Serverless Microframework for AWS, Release 1.15.1

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def s3objects(key):

request = app.current_request
if request.method == 'PUT':

S3.put_object(Bucket=BUCKET, Key=key,
Body=json.dumps(request.json_body))

elif request.method == 'GET':
try:

response = S3.get_object(Bucket=BUCKET, Key=key)
return json.loads(response['Body'].read())

except ClientError as e:
raise NotFoundError(key)

Make sure to change BUCKET with the name of an S3 bucket you own. Redeploy your changes with chalice
deploy. Now, whenever we make a PUT request to /objects/keyname, the data send will be stored in S3. Any
subsequent GET requests will retrieve this data from S3.

10.1 Manually Providing Policies

IAM permissions can be auto generated, provided manually or can be pre-created and explicitly configured. To use a
pre-configured IAM role ARN for chalice, add these two keys to your chalice configuration. Setting manage_iam_role
to false tells Chalice to not attempt to generate policies and create IAM role.

"manage_iam_role":false
"iam_role_arn":"arn:aws:iam::<account-id>:role/<role-name>"

Whenever your application is deployed using chalice, the auto generated policy is written to disk at
<projectdir>/.chalice/policy.json. When you run the chalice deploy command, you can
also specify the --no-autogen-policy option. Doing so will result in the chalice CLI loading the
<projectdir>/.chalice/policy.json file and using that file as the policy for the IAM role. You can
manually edit this file and specify --no-autogen-policy if you’d like to have full control over what IAM policy
to associate with the IAM role.

You can also run the chalice gen-policy command from your project directory to print the auto generated
policy to stdout. You can then use this as a starting point for your policy.

$ chalice gen-policy
{

"Version": "2012-10-17",
"Statement": [
{

"Action": [
"s3:ListAllMyBuckets"

],
"Resource": [

"*"
],
"Effect": "Allow",
"Sid": "9155de6ad1d74e4c8b1448255770e60c"

}
]

}

26 Chapter 10. Tutorial: Policy Generation

Python Serverless Microframework for AWS, Release 1.15.1

10.2 Experimental Status

The automatic policy generation is still in the early stages, it should be considered experimental. You can always
disable policy generation with --no-autogen-policy for complete control.

Additionally, you will be prompted for confirmation whenever the auto policy generator detects actions that it would
like to add or remove:

$ chalice deploy
Updating IAM policy.

The following action will be added to the execution policy:

s3:ListBucket

Would you like to continue? [Y/n]:

10.2. Experimental Status 27

Python Serverless Microframework for AWS, Release 1.15.1

28 Chapter 10. Tutorial: Policy Generation

CHAPTER 11

Tutorial: Using Custom Authentication

AWS API Gateway routes can be authenticated in multiple ways:

• API Key

• AWS IAM

• Cognito User Pools

• Custom Auth Handler

11.1 API Key

@app.route('/authenticated', methods=['GET'], api_key_required=True)
def authenticated():

return {"secure": True}

Only requests sent with a valid X-Api-Key header will be accepted.

11.2 Using AWS IAM

authorizer = IAMAuthorizer()

@app.route('/iam-role', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"secure": True}

11.3 Using Amazon Cognito User Pools

To integrate with cognito user pools, you can use the CognitoUserPoolAuthorizer object:

authorizer = CognitoUserPoolAuthorizer(
'MyPool', header='Authorization',
provider_arns=['arn:aws:cognito:...:userpool/name'])

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"secure": True}

29

Python Serverless Microframework for AWS, Release 1.15.1

Note, earlier versions of chalice also have an app.define_authorizer method as well as an
authorizer_name argument on the @app.route(...) method. This approach is deprecated in favor
of CognitoUserPoolAuthorizer and the authorizer argument in the @app.route(...) method.
app.define_authorizer will be removed in future versions of chalice.

11.4 Using Custom Authorizers

To integrate with custom authorizers, you can use the CustomAuthorizer method on the app object. You’ll need
to set the authorizer_uri to the URI of your lambda function.

authorizer = CustomAuthorizer(
'MyCustomAuth', header='Authorization',
authorizer_uri=('arn:aws:apigateway:region:lambda:path/2015-03-31'

'/functions/arn:aws:lambda:region:account-id:'
'function:FunctionName/invocations'))

@app.route('/custom-auth', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"secure": True}

30 Chapter 11. Tutorial: Using Custom Authentication

CHAPTER 12

Tutorial: Local Mode

As you develop your application, you may want to experiment locally before deploying your changes. You can use
chalice local to spin up a local HTTP server you can use for testing.

For example, if we have the following app.py file:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():

return {'hello': 'world'}

We can run chalice local to test this API locally:

$ chalice local
Serving on localhost:8000

We can override the port using:

$ chalice local --port=8080

We can now test our API using localhost:8000:

$ http localhost:8000/
HTTP/1.0 200 OK
Content-Length: 18
Content-Type: application/json
Date: Thu, 27 Oct 2016 20:08:43 GMT
Server: BaseHTTP/0.3 Python/3.7.3

{
"hello": "world"

}

The chalice local command does not assume the role associated with your lambda function, so you’ll need to
use an AWS_PROFILE that has sufficient permissions to your AWS resources used in your app.py.

31

Python Serverless Microframework for AWS, Release 1.15.1

32 Chapter 12. Tutorial: Local Mode

CHAPTER 13

Deleting Your App

You can use the chalice delete command to delete your app. Similar to the chalice deploy command,
you can specify which chalice stage to delete. By default it will delete the dev stage:

$ chalice delete --stage dev
Deleting Rest API: duvw4kwyl3
Deleting function aws:arn:lambda:region:123456789:helloworld-dev
Deleting IAM Role helloworld-dev

33

Python Serverless Microframework for AWS, Release 1.15.1

34 Chapter 13. Deleting Your App

CHAPTER 14

Topics

14.1 Routing

The Chalice.route() method is used to construct which routes you want to create for your API. The concept is
the same mechanism used by Flask and bottle. You decorate a function with @app.route(...), and whenever a
user requests that URL, the function you’ve decorated is called. For example, suppose you deployed this app:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():

return {'view': 'index'}

@app.route('/a')
def a():

return {'view': 'a'}

@app.route('/b')
def b():

return {'view': 'b'}

If you go to https://endpoint/, the index() function would be called. If you went to
https://endpoint/a and https://endpoint/b, then the a() and b() function would be called, respec-
tively.

Note: Do not end your route paths with a trailing slash. If you do this, the chalice deploy command will raise
a validation error.

You can also create a route that captures part of the URL. This captured value will then be passed in as arguments to
your view function:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/users/{name}')

35

https://palletsprojects.com/p/flask/
http://bottlepy.org/docs/dev/index.html

Python Serverless Microframework for AWS, Release 1.15.1

def users(name):
return {'name': name}

If you then go to https://endpoint/users/james, then the view function will be called as:
users(’james’). The parameters are passed as keyword parameters based on the name as they appear in the
URL. The argument names for the view function must match the name of the captured argument:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/a/{first}/b/{second}')
def users(first, second):

return {'first': first, 'second': second}

14.1.1 Other Request Metadata

The route path can only contain [a-zA-Z0-9._-] chars and curly braces for parts of the URL you want to capture.
You do not need to model other parts of the request you want to capture, including headers and query strings. Within a
view function, you can introspect the current request using the app.current_request attribute. This also means
you cannot control the routing based on query strings or headers. Here’s an example for accessing query string data in
a view function:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/users/{name}')
def users(name):

result = {'name': name}
if app.current_request.query_params.get('include-greeting') == 'true':

result['greeting'] = 'Hello, %s' % name
return result

In the function above, if the user provides a ?include-greeting=true in the HTTP request, then an additional
greeting key will be returned:

$ http https://endpoint/api/users/bob

{
"name": "bob"

}

$ http https://endpoint/api/users/bob?include-greeting=true

{
"greeting": "Hello, bob",
"name": "bob"

}

36 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

14.2 Views

A view function in chalice is the function attached to an @app.route() decorator. In the example below, index
is the view function:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/')
def index():

return {'view': 'index'}

14.2.1 View Function Parameters

A view function’s parameters correspond to the number of captured URL parameters specified in the @app.route
call. In the example above, the route / specifies no captured parameters so the index view function accepts no
parameters. However, in the view function below, a single URL parameter, {city} is specified, so the view function
must accept a single parameter:

from chalice import Chalice

app = Chalice(app_name='helloworld')

@app.route('/cities/{city}')
def index(city):

return {'city': city}

This indicates that the value of {city} is variable, and whatever value is provided in the URL is passed to the index
view function. For example:

GET /cities/seattle --> index('seattle')
GET /cities/portland --> index('portland')

If you want to access any other metdata of the incoming HTTP request, you can use the app.current_request
property, which is an instance of the the Request class.

14.2.2 View Function Return Values

The response returned back to the client depends on the behavior of the view function. There are several options
available:

• Returning an instance of Response. This gives you complete control over what gets returned back to the
customer.

• A bytes type response body must have a Content-Type header value that is present in the
app.api.binary_types list in order to be handled properly.

• Any other return value will be serialized as JSON and sent back as the response body with content type
application/json.

• Any subclass of ChaliceViewError will result in an HTTP response being returned with the status code
associated with that response, and a JSON response body containing a Code and a Message. This is discussed
in more detail below.

14.2. Views 37

Python Serverless Microframework for AWS, Release 1.15.1

• Any other exception raised will result in a 500 HTTP response. The body of that response depends on whether
debug mode is enabled.

14.2.3 Error Handling

Chalice provides a built in set of exception classes that map to common HTTP errors including:

• BadRequestError- returns a status code of 400

• UnauthorizedError- returns a status code of 401

• ForbiddenError- returns a status code of 403

• NotFoundError- returns a status code of 404

• ConflictError- returns a status code of 409

• TooManyRequestsError- returns a status code of 429

• ChaliceViewError- returns a status code of 500

You can raise these anywhere in your view functions and chalice will convert these to the appropriate HTTP response.
The default chalice error responses will send the error back as application/json with the response body con-
taining a Code corresponding to the exception class name and a Message key corresponding to the string provided
when the exception was instantiated. For example:

from chalice import Chalice
from chalice import BadRequestError

app = Chalice(app_name="badrequest")

@app.route('/badrequest')
def badrequest():

raise BadRequestError("This is a bad request")

This view function will generate the following HTTP response:

$ http https://endpoint/api/badrequest
HTTP/1.1 400 Bad Request

{
"Code": "BadRequestError",
"Message": "This is a bad request"

}

In addition to the built in chalice exceptions, you can use the Response class to customize the HTTP errors if you
prefer to either not have JSON error responses or customize the JSON response body for errors. For example:

from chalice import Chalice, Response

app = Chalice(app_name="badrequest")

@app.route('/badrequest')
def badrequest():

return Response(body='Plain text error message',
headers={'Content-Type': 'text/plain'},
status_code=400)

38 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

14.2.4 Specifying HTTP Methods

So far, our examples have only allowed GET requests. It’s actually possible to support additional HTTP methods.
Here’s an example of a view function that supports PUT:

@app.route('/resource/{value}', methods=['PUT'])
def put_test(value):

return {"value": value}

We can test this method using the http command:

$ http PUT https://endpoint/api/resource/foo
HTTP/1.1 200 OK

{
"value": "foo"

}

Note that the methods kwarg accepts a list of methods. Your view function will be called when any of the HTTP
methods you specify are used for the specified resource. For example:

@app.route('/myview', methods=['POST', 'PUT'])
def myview():

pass

The above view function will be called when either an HTTP POST or PUT is sent to /myview as shown below:

POST /myview --> myview()
PUT /myview --> myview()

Alternatively if you do not want to share the same view function across multiple HTTP methods for the same route
url, you may define separate view functions to the same route url but have the view functions differ by HTTP method.
For example:

@app.route('/myview', methods=['POST'])
def myview_post():

pass

@app.route('/myview', methods=['PUT'])
def myview_put():

pass

This setup will route all HTTP POST’s to /myview to the myview_post() view function and route all HTTP
PUT’s to /myview to the myview_put() view function as shown below:

POST /myview --> myview_post()
PUT /myview --> myview_put()

If you do chose to use separate view functions for the same route path, it is important to know:

• View functions that share the same route cannot have the same names. For example, two view functions that
both share the same route path cannot both be named view().

• View functions that share the same route cannot overlap in supported HTTP methods. For example if two view
function both share the same route path, they both cannot contain ’PUT’ in their route methods list.

• View functions that share the same route path and have CORS configured cannot have differing CORS config-
uration. For example, if two view functions that both share the same route path, the route configuration for one
of the view functions cannot set cors=True while having the route configuration of the other view function
be set to cors=app.CORSConfig(allow_origin=’https://foo.example.com’).

14.2. Views 39

Python Serverless Microframework for AWS, Release 1.15.1

14.2.5 Binary Content

Chalice supports binary payloads through its app.api.binary_types list. Any type in this list is con-
sidered a binary Content-Type. Whenever a request with a Content-Type header is encountered that
matches an entry in the binary_types list, its body will be available as a bytes type on the property
app.current_request.raw_body. Similarly, in order to send binary data back in a response, simply set your
Content-Type header to something present in the binary_types list. Note that you can override the default
types by modifying the app.api.binary_types list at the module level.

Here is an example app which simply echos back binary content:

from chalice import Chalice, Response

app = Chalice(app_name="binary-response")

@app.route('/bin-echo', methods=['POST'],
content_types=['application/octet-stream'])

def bin_echo():
raw_request_body = app.current_request.raw_body
return Response(body=raw_request_body,

status_code=200,
headers={'Content-Type': 'application/octet-stream'})

You can see this app echo back binary data sent to it:

$ echo -n -e "\xFE\xED" | http POST $(chalice url)bin-echo \
Accept:application/octet-stream Content-Type:application/octet-stream | xxd

0000000: feed ..

Note that both the Accept and Content-Type header are required. If you fail to set the Content-Type header
on the request will result in a 415 UnsupportedMediaType error. Care must be taken when configuring what
content_types a route accepts, they must all be valid binary types, or they must all be non-binary types. The
Accept header must also be set if the data returned is to be the raw binary, if is omitted the call return a 400 Bad
Request response.

For example, here is the same call as above without the Accept header:

$ echo -n -e "\xFE\xED" | http POST $(chalice url)bin-echo \
Content-Type:application/octet-stream

HTTP/1.1 400 Bad Request
Connection: keep-alive
Content-Length: 270
Content-Type: application/json
Date: Sat, 27 May 2017 07:09:51 GMT

{
"Code": "BadRequest",
"Message": "Request did not specify an Accept header with
application/octet-stream, The response has a Content-Type of
application/octet-stream. If a response has a binary Content-Type then
the request must specify an Accept header that matches."

}

14.2.6 Usage Recommendations

If you want to return a JSON response body, just return the corresponding python types directly. You don’t need to
use the Response class. Chalice will automatically convert this to a JSON HTTP response as a convenience for you.

40 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

Use the Response class when you want to return non-JSON content, or when you want to inject custom HTTP
headers to your response.

For errors, raise the built in ChaliceViewError subclasses (e.g BadRequestError, NotFoundError,
ConflictError etc) when you want to return a HTTP error response with a preconfigured JSON body containing
a Code and Message.

Use the Response class when you want to customize the error responses to either return a different JSON error
response body, or to return an HTTP response that’s not application/json.

14.3 Configuration File

Whenever you create a new project using chalice new-project, a .chalice directory is created for you. In
this directory is a config.json file that you can use to control what happens when you chalice deploy:

$ tree -a
.
-- .chalice
| -- config.json
-- app.py
-- requirements.txt

1 directory, 3 files

14.3.1 Stage Specific Configuration

As of version 0.7.0 of chalice, you can specify configuration that is specific to a chalice stage as well as configuration
that should be shared across all stages. See the Chalice Stages doc for more information about chalice stages.

• stages - This value of this key is a mapping of chalice stage name to stage configuration. Chalice assumes
a default stage name of dev. If you run the chalice new-project command on chalice 0.7.0 or higher,
this key along with the default dev key will automatically be created for you. See the examples section below
for some stage specific configurations.

The following config values can either be specified per stage config or as a top level key which is not tied to a specific
stage. Whenever a stage specific configuration value is needed, the stages mapping is checked first. If no value is
found then the top level keys will be checked.

api_gateway_endpoint_type

The endpoint configuration of the deployed API Gateway which determines how the API will be accessed, can be
EDGE, REGIONAL, PRIVATE. Note this value can only be set as a top level key and defaults to EDGE. For more
information see https://amzn.to/2LofApt

api_gateway_endpoint_vpce

When configuring a Private API a VPC Endpoint id must be specified to configure a default resource policy on the
API if an explicit policy is not specified. This value can be a list or a string of endpoint ids.

14.3. Configuration File 41

https://amzn.to/2LofApt

Python Serverless Microframework for AWS, Release 1.15.1

api_gateway_policy_file

A file pointing to an IAM resource policy for the REST API. If not specified chalice will autogenerate this policy when
endpoint_type is PRIVATE. This filename is relative to the .chalice directory.

api_gateway_stage

The name of the API gateway stage. This will also be the URL prefix for your API
(https://endpoint/prefix/your-api).

autogen_policy

A boolean value that indicates if chalice should try to automatically generate an IAM policy based on analyzing your
application source code. The default value is true. If this value is false then chalice will load try to a local file in
.chalice/policy-<stage-name>.json instead of auto-generating a policy from source code analysis.

environment_variables

A mapping of key value pairs. These key value pairs will be set as environment variables in your application. All
environment variables must be strings. If this key is specified in both a stage specific config option as well as a top
level key, the stage specific environment variables will be merged into the top level keys. See the examples section
below for a concrete example.

iam_policy_file

When autogen_policy is false, chalice will try to load an IAM policy from disk instead of auto-generating one
based on source code analysis. The default location of this file is .chalice/policy-<stage-name>.json,
e.g .chalice/policy-dev.json, .chalice/policy-prod.json, etc. You can change the filename by
providing this iam_policy_file config option. This filename is relative to the .chalice directory.

iam_role_arn

If manage_iam_role is false, you must specify this value that indicates which IAM role arn to use when con-
figuration your application. This value is only used if manage_iam_role is false.

lambda_memory_size

An integer representing the amount of memory, in MB, your Lambda function is given. AWS Lambda uses this
memory size to infer the amount of CPU allocated to your function. The default lambda_memory_size value is
128. The value must be a multiple of 64 MB.

lambda_timeout

An integer representing the function execution time, in seconds, at which AWS Lambda should terminate the function.
The default lambda_timeout is 60 seconds.

42 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

layers

A list of Lambda Layers arns. This value can be provided per stage as well as per Lambda function. See AWS Lambda
Layers Configuration.

manage_iam_role

true/false. Indicates if you want chalice to create and update the IAM role used for your application. By de-
fault, this value is true. However, if you have a pre-existing role you’ve created, you can set this value to false
and a role will not be created or updated. "manage_iam_role": false means that you are responsible for
managing the role and any associated policies associated with that role. If this value is false you must specify an
iam_role_arn, otherwise an error is raised when you try to run chalice deploy.

minimum_compression_size

An integer value that indicates the minimum compression size to apply to the API gateway. If this key is specified in
both a stage specific config option as well as a top level key, the stage specific key will override the top level key for
the given stage. For more information check out the Service Docs

reserved_concurrency

An integer representing each function’s reserved concurrency. This value can be provided per stage as well as per
Lambda function. AWS Lambda reserves this value of concurrency to each lambda deployed in this stage. If the
value is set to 0, invocations to this function are blocked. If the value is unset, there will be no reserved concurrency
allocations. For more information, see AWS Documentation on managing concurrency.

subnet_ids

A list of subnet ids for VPC configuration. This value can be provided per stage as well as per Lambda function.
In order for this value to take effect, you must also provide the security_group_ids value. When both values
are provided and autogen_policy is True, chalice will automatically update your IAM role with the necessary
permissions to create, describe, and delete ENIs. If you are managing the IAM role policy yourself, make sure to
update your permissions accordingly, as described in the AWS Lambda VPC documentation.

security_group_ids

A list of security groups for VPC configuration. This value can be provided per stage as well as per Lambda function.
In order for this value to take effect, you must also provide the subnet_ids value.

tags

A mapping of key value pairs. These key value pairs will be set as the tags on the resources running your deployed
application. All tag keys and values must be strings. Similar to environment_variables, if a key is speci-
fied in both a stage specific config option as well as a top level key, the stage specific tags will be merged into the
top level keys. By default, all chalice deployed resources are tagged with the key ’aws-chalice’ whose value
is ’version={chalice-version}:stage={stage-name}:app={app-name}’. Currently only the fol-
lowing chalice deployed resources are tagged: Lambda functions.

14.3. Configuration File 43

https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-gzip-compression-decompression.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html#vpc-configuring

Python Serverless Microframework for AWS, Release 1.15.1

14.3.2 Lambda Specific Configuration

In addition to a chalice stage, there are also some configuration values that can be specified per Lambda function. A
chalice app can have many stages, and a stage can have many Lambda functions.

You have the option to specify configuration for a lambda function across all your stages, or for a lambda function in
a specific stage.

To configure per lambda configuration for a specific stage, you add a lambda_functions key in your stage con-
figuration:

{
"version": "2.0",
"app_name": "app",
"stages": {
"dev": {

"lambda_functions": {
"foo": {
"lambda_timeout": 120

}
}

}
}

}

To specify per lambda configuration across all stages, you add a top level lambda_functions key:

{
"version": "2.0",
"app_name": "app",
"lambda_functions": {
"foo": {

"lambda_timeout": 120
}

}
}

Each key in the lambda_functions dictionary is the name of a Lambda function in your app. The value is a
dictionary of configuration that will be applied to that function. These are the configuration options that can be applied
per function:

• autogen_policy

• environment_variables

• iam_policy_file

• iam_role_arn

• lambda_memory_size

• lambda_timeout

• layers

• manage_iam_role

• reserved_concurrency

• security_group_ids

• subnet_ids

• tags

44 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

See the Stage Specific Configuration section above for a description of these config options.

In general, the name of your lambda function will correspond to the name of the function in your app. For example:

@app.lambda_function()
def foo(event, context):

pass

To specify configuration for this function, you would use the key of foo in the lambda_functions configuration.

There is one exception to this, which is any python function decorated with the @app.route() decorator. Chalice
uses a single Lambda function for all requests from API gateway, and this name is api_handler. So if you have an
app like this:

@app.route('/')
def index(): pass

@app.route('/foo/bar')
def other_handler(): pass

Then to specify configuration values for the underlying lambda function, which index() and other_handler()
share, you would specify:

{
"lambda_functions": {
"api_handler": {

"subnet_ids": ["sn-1", "sn-2"],
"security_group_ids": ["sg-10", "sg-11"],
"layers": ["layer-arn-1", "layer-arn-2"],

}
}

}

14.3.3 Examples

Below are examples that show how you can configure your chalice app.

IAM Roles and Policies

Here’s an example for configuring IAM policies across stages:

{
"version": "2.0",
"app_name": "app",
"stages": {
"dev": {

"autogen_policy": true,
"api_gateway_stage": "dev"

},
"beta": {

"autogen_policy": false,
"iam_policy_file": "beta-app-policy.json"

},
"prod": {

"manage_iam_role": false,
"iam_role_arn": "arn:aws:iam::...:role/prod-role"

}

14.3. Configuration File 45

Python Serverless Microframework for AWS, Release 1.15.1

}
}

In this config file we’re specifying three stages, dev, beta, and prod. In the dev stage, chalice will automatically
generate an IAM policy based on analyzing the application source code. For the beta stage, chalice will load the
.chalice/beta-app-policy.json file and use it as the policy to associate with the IAM role for that stage.
In the prod stage, chalice won’t modify any IAM roles. It will just set the IAM role for the Lambda function to be
arn:aws:iam::...:role/prod-role.

Here’s an example that show config precedence:

{
"version": "2.0",
"app_name": "app",
"api_gateway_stage": "api",
"stages": {
"dev": {
},
"beta": {
},
"prod": {

"api_gateway_stage": "prod",
"manage_iam_role": false,
"iam_role_arn": "arn:aws:iam::...:role/prod-role"

}
}

}

In this config file, both the dev and beta stage will have an API gateway stage name of api because they will
default to the top level api_gateway_stage key. However, the prod stage will have an API gateway stage name
of prod because the api_gateway_stage is specified in {"stages": {"prod": ...}} mapping.

Environment Variables

In the following example, environment variables are specified both as top level keys as well as per stage. This allows
us to provide environment variables that all stages should have as well as stage specific environment variables:

{
"version": "2.0",
"app_name": "app",
"environment_variables": {
"SHARED_CONFIG": "foo",
"OTHER_CONFIG": "from-top"

},
"stages": {
"dev": {

"environment_variables": {
"TABLE_NAME": "dev-table",
"OTHER_CONFIG": "dev-value"

}
},
"prod": {

"environment_variables": {
"TABLE_NAME": "prod-table",
"OTHER_CONFIG": "prod-value"

}
}

46 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

}
}

For the above config, the dev stage will have the following environment variables set:

{
"SHARED_CONFIG": "foo",
"TABLE_NAME": "dev-table",
"OTHER_CONFIG": "dev-value",

}

The prod stage will have these environment variables set:

{
"SHARED_CONFIG": "foo",
"TABLE_NAME": "prod-table",
"OTHER_CONFIG": "prod-value",

}

Per Lambda Examples

Suppose we had the following chalice app:

from chalice import Chalice

app = Chalice(app_name='demo')

@app.lambda_function()
def foo(event, context):

pass

@app.lambda_function()
def bar(event, context):

pass

Given these two functions, we’d like to configure the functions as follows:

• Both functions should have an environment variable OWNER with value dev-team.

• The foo function should have an autogenerated IAM policy managed by chalice.

• The foo function should be run in a VPC with subnet ids sn-1 and sn-2, with security groups sg-10 and
sg-11. Chalice should also automatically configure the IAM policy with permissions to modify EC2 network
interfaces.

• The foo function should have two connected layers as layer-arn-1 and layer-arn-2. Chalice should
automatically configure the IAM policy.

• The bar function should use a pre-existing IAM role that was created outside of chalice. Chalice should not
perform an IAM role management for the bar function.

• The bar function should have an environment variable TABLE_NAME with value mytable.

We can accomplish all this with this config file:

{
"stages": {
"dev": {

"environment_variables": {
"OWNER": "dev-team"

14.3. Configuration File 47

Python Serverless Microframework for AWS, Release 1.15.1

}
"api_gateway_stage": "api",
"lambda_functions": {

"foo": {
"subnet_ids": ["sn-1", "sn-2"],
"security_group_ids": ["sg-10", "sg-11"],
"layers": ["layer-arn-1", "layer-arn-2"],

},
"bar": {
"manage_iam_role": false,
"iam_role_arn": "arn:aws:iam::my-role-name",
"environment_variables": {"TABLE_NAME": "mytable"}

}
}

}
},
"version": "2.0",
"app_name": "demo"

}

14.4 Multifile Support

The app.py file contains all of your view functions and route information, but you don’t have to keep all of your
application code in your app.py file.

As your application grows, you may reach out a point where you’d prefer to structure your application in multiple files.
You can create a chalicelib/ directory, and anything in that directory is recursively included in the deployment
package. This means that you can have files besides just .py files in chalicelib/, including .json files for
config, or any kind of binary assets.

Let’s take a look at a few examples.

Consider the following app directory structure layout:
.
-- app.py
-- chalicelib
| -- __init__.py
-- requirements.txt

Where chalicelib/__init__.py contains:

MESSAGE = 'world'

and the app.py file contains:

1 from chalice import Chalice
2 from chalicelib import MESSAGE
3

4 app = Chalice(app_name="multifile")
5

6 @app.route("/")
7 def index():
8 return {"hello": MESSAGE}

Note in line 2 we’re importing the MESSAGE variable from the chalicelib package, which is a top level directory
in our project. We’ve created a chalicelib/__init__.py file which turns the chalicelib directory into a
python package.

48 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

We can also use this directory to store config data. Consider this app structure layout:
.
-- app.py
-- chalicelib
| -- config.json
-- requirements.txt

With chalicelib/config.json containing:

{"message": "world"}

In our app.py code, we can load and use our config file:

1 import os
2 import json
3

4 from chalice import Chalice
5

6 app = Chalice(app_name="multifile")
7

8 filename = os.path.join(
9 os.path.dirname(__file__), 'chalicelib', 'config.json')

10 with open(filename) as f:
11 config = json.load(f)
12

13 @app.route("/")
14 def index():
15 # We can access ``config`` here if we want.
16 return {"hello": config['message']}

14.5 Logging

You have several options for logging in your application. You can use any of the options available to lambda functions
as outlined in the AWS Lambda Docs. The simplest option is to just use print statements. Anything you print will be
accessible in cloudwatch logs as well as in the output of the chalice logs command.

In addition to using the stdlib logging module directly, the framework offers a preconfigured logger designed to
work nicely with Lambda. This is offered purely as a convenience, you can use print or the logging module
directly if you prefer.

You can access this logger via the app.log attribute, which is a logger specifically for your application. This attribute
is an instance of logging.getLogger(your_app_name_) that’s been preconfigured with reasonable defaults:

• StreamHandler associated with sys.stdout.

• Log level set to logging.ERROR by default. You can also manually set the logging level by setting
app.log.setLevel(logging.DEBUG).

• A logging formatter that displays the app name, level name, and message.

14.5.1 Examples

In the following application, we’re using the application logger to emit two log messages, one at DEBUG and one at
the ERROR level:

14.5. Logging 49

https://docs.aws.amazon.com/lambda/latest/dg/python-logging.html

Python Serverless Microframework for AWS, Release 1.15.1

from chalice import Chalice

app = Chalice(app_name='demolog')

@app.route('/')
def index():

app.log.debug("This is a debug statement")
app.log.error("This is an error statement")
return {'hello': 'world'}

If we make a request to this endpoint, and then look at chalice logs we’ll see the following log message:

2016-11-06 20:24:25.490000 9d2a92 demolog - ERROR - This is an error statement

As you can see, only the ERROR level log is emitted because the default log level is ERROR. Also note the log message
formatting. This is the default format that’s been automatically configured. We can make a change to set our log level
to debug:

from chalice import Chalice

app = Chalice(app_name='demolog')
Enable DEBUG logs.
app.log.setLevel(logging.DEBUG)

@app.route('/')
def index():

app.log.debug("This is a debug statement")
app.log.error("This is an error statement")
return {'hello': 'world'}

Now if we make a request to the / URL and look at the output of chalice logs, we’ll see the following log
message:

2016-11-07 12:29:15.714 431786 demolog - DEBUG - This is a debug statement
2016-11-07 12:29:15.714 431786 demolog - ERROR - This is an error statement

As you can see here, both the debug and error log message are shown.

You can use the -n/--name option to view the logs for a specific lambda function. By default, the logs for the API
handler lambda function are shown. This corresponds to any log statements made within an @app.route() call.
The name option is the logical name of the lambda function. This is the name of the python function by default, or
whatever name you provided as the name kwarg to the @app.lambda_function() call. For example, given this
app:

from chalice import Chalice

app = Chalice(app_name='multilog')

@app.lambda_function()
def foo(event, context):

app.log.debug("Invoking from function foo")
return {'hello': 'world'}

@app.lambda_function(name='MyFunction)
def bar(event, context):

50 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

incr_counter()
app.log.debug("Invoking from function bar")
return {'hello': 'world'}

You can retrieve logs for the above function by running:

$ chalice logs --name foo
$ chalice logs --name MyFunction

14.6 SDK Generation

The @app.route(...) information you provide chalice allows it to create corresponding routes in API Gateway.
One of the benefits of this approach is that we can leverage API Gateway’s SDK generation process. Chalice offers a
chalice generate-sdk command that will automatically generate an SDK based on your declared routes.

Note: The only supported language at this time is javascript.

Keep in mind that chalice itself does not have any logic for generating SDKs. The SDK generation happens service
side in API Gateway, the chalice generate-sdk is just a high level wrapper around that functionality.

To generate an SDK for a chalice app, run this command from the project directory:

$ chalice generate-sdk /tmp/sdk

You should now have a generated javascript sdk in /tmp/sdk. API Gateway includes a README.md as part of its
SDK generation which contains details on how to use the javascript SDK.

14.6.1 Example

Suppose we have the following chalice app:

from chalice import Chalice

app = Chalice(app_name='sdktest')

@app.route('/', cors=True)
def index():

return {'hello': 'world'}

@app.route('/foo', cors=True)
def foo():

return {'foo': True}

@app.route('/hello/{name}', cors=True)
def hello_name(name):

return {'hello': name}

@app.route('/users/{user_id}', methods=['PUT'], cors=True)
def update_user(user_id):

return {"msg": "fake updated user", "userId": user_id}

Let’s generate a javascript SDK and test it out in the browser. Run the following command from the project dir:

14.6. SDK Generation 51

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-generate-sdk.html

Python Serverless Microframework for AWS, Release 1.15.1

$ chalice generate-sdk /tmp/sdkdemo
$ cd /tmp/sdkdemo
$ ls -la
-rw-r--r-- 1 jamessar r 3227 Nov 21 17:06 README.md
-rw-r--r-- 1 jamessar r 9243 Nov 21 17:06 apigClient.js
drwxr-xr-x 6 jamessar r 204 Nov 21 17:06 lib

You should now be able to follow the instructions from API Gateway in the README.md file. Below is a snippet that
shows how the generated javascript SDK methods correspond to the @app.route() calls in chalice.

<script type="text/javascript">
// Below are examples of how the javascript SDK methods
// correspond to chalice @app.routes()
var apigClient = apigClientFactory.newClient();

// @app.route('/')
apigClient.rootGet().then(result => {

document.getElementById('root-get').innerHTML = JSON.stringify(result.data);
});

// @app.route('/foo')
apigClient.fooGet().then(result => {

document.getElementById('foo-get').innerHTML = JSON.stringify(result.data);
});

// @app.route('/hello/{name}')
apigClient.helloNameGet({name: 'jimmy'}).then(result => {

document.getElementById('helloname-get').innerHTML = JSON.stringify(result.data);
});

// @app.route('/users/{user_id}', methods=['PUT'])
apigClient.usersUserIdPut({user_id: '123'}, 'body content').then(result => {

document.getElementById('users-userid-put').innerHTML = JSON.stringify(result.data);
});

</script>

Example HTML File

If you want to try out the example above, you can use the following index.html page to test:

<!DOCTYPE html>
<html lang="en">

<head>
<title>SDK Test</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/skeleton/2.0.4/skeleton.min.css">
<script type="text/javascript" src="lib/axios/dist/axios.standalone.js"></script>
<script type="text/javascript" src="lib/CryptoJS/rollups/hmac-sha256.js"></script>
<script type="text/javascript" src="lib/CryptoJS/rollups/sha256.js"></script>
<script type="text/javascript" src="lib/CryptoJS/components/hmac.js"></script>
<script type="text/javascript" src="lib/CryptoJS/components/enc-base64.js"></script>
<script type="text/javascript" src="lib/url-template/url-template.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/sigV4Client.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/apiGatewayClient.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/simpleHttpClient.js"></script>
<script type="text/javascript" src="lib/apiGatewayCore/utils.js"></script>

52 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

<script type="text/javascript" src="apigClient.js"></script>

<script type="text/javascript">
// Below are examples of how the javascript SDK methods
// correspond to chalice @app.routes()
var apigClient = apigClientFactory.newClient();

// @app.route('/')
apigClient.rootGet().then(result => {

document.getElementById('root-get').innerHTML = JSON.stringify(result.data);
});

// @app.route('/foo')
apigClient.fooGet().then(result => {

document.getElementById('foo-get').innerHTML = JSON.stringify(result.data);
});

// @app.route('/hello/{name}')
apigClient.helloNameGet({name: 'jimmy'}).then(result => {

document.getElementById('helloname-get').innerHTML = JSON.stringify(result.data);
});

// @app.route('/users/{user_id}', methods=['PUT'])
apigClient.usersUserIdPut({user_id: '123'}, 'body content').then(result => {

document.getElementById('users-userid-put').innerHTML = JSON.stringify(result.data);
});

</script>
</head>
<body>

<div><h5>result of rootGet()</h5><pre id="root-get"></pre></div>
<div><h5>result of fooGet()</h5><pre id="foo-get"></pre></div>
<div><h5>result of helloNameGet({name: 'jimmy'})</h5><pre id="helloname-get"></pre></div>
<div><h5>result of usersUserIdPut({user_id: '123'})</h5><pre id="users-userid-put"></pre></div>

</body>
</html>

14.7 Chalice Stages

Chalice has the concept of stages, which are completely separate sets of AWS resources. When you first create a
chalice project and run commands such as chalice deploy and chalice url, you don’t have to specify any
stage values or stage configuration. This is because chalice will use a stage named dev by default.

You may eventually want to have multiple stages of your application. A common configuration would be to have a
dev, beta and prod stage. A dev stage would be used by developers to test out new features. Completed features
would be deployed to beta, and the prod stage would be used for serving production traffic.

Chalice can help you manage this.

To create a new chalice stage, specify the --stage argument. If the stage does not exist yet, it will be created for
you:

$ chalice deploy --stage prod

By creating a new chalice stage, a new API Gateway rest API, Lambda function, and potentially (depending on config
settings) a new IAM role will be created for you.

14.7. Chalice Stages 53

Python Serverless Microframework for AWS, Release 1.15.1

14.7.1 Example

Let’s say we have a new app:

$ chalice new-project myapp
$ cd myapp
$ chalice deploy
...
https://mmnkdi.execute-api.us-west-2.amazonaws.com/api/

We’ve just created our first stage, dev. We can iterate on our application and continue to run chalice deploy to
deploy our code to the dev stage. Let’s say we want to now create a prod stage. To do this, we can run:

$ chalice deploy --stage prod
...
https://wk9fhx.execute-api.us-west-2.amazonaws.com/api/

We now have two completely separate rest APIs:

$ chalice url --stage dev
https://mmnkdi.execute-api.us-west-2.amazonaws.com/api/

$ chalice url --stage prod
https://wk9fhx.execute-api.us-west-2.amazonaws.com/api/

Additionally, we can see all our deployed values by looking at the .chalice/deployed/dev.json or
.chalice/deployed/prod.json files:

$ cat .chalice/deployed/dev.json
{

"resources": [
{

"name": "api_handler",
"resource_type": "lambda_function",
"lambda_arn": "arn:aws:lambda:...:function:myapp-dev"

},
{

"name": "rest_api",
"resource_type": "rest_api",
"rest_api_id": "wk9fhx",
"rest_api_url": "https://wk9fhx.execute-api.us-west-2.amazonaws.com/api/"

}
],
"schema_version": "2.0",
"backend": "api"

}

$ cat .chalice/deployed/prod.json
{

"resources": [
{

"name": "api_handler",
"resource_type": "lambda_function",
"lambda_arn": "arn:aws:lambda:...:function:myapp-prod"

},
{

"name": "rest_api",
"resource_type": "rest_api",
"rest_api_id": "mmnkdi",

54 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

"rest_api_url": "https://mmnkdi.execute-api.us-west-2.amazonaws.com/api/"
}

],
"schema_version": "2.0",
"backend": "api"

}

14.8 App Packaging

In order to deploy your Chalice app, a zip file is created that contains your application and all third party packages
your application requires. This file is used by AWS Lambda and is referred to as a deployment package.

Chalice will automatically create this deployment package for you, and offers several features to make this easier to
manage. Chalice allows you to clearly separate application specific modules and packages you are writing from 3rd
party package dependencies.

14.8.1 App Directories

You have two options to structure application specific code/config:

• app.py - This file includes all your route information and is always included in the deployment package.

• chalicelib/ - This directory (if it exists) is included in the deployment package. This is where you can add config
files and additional application modules if you prefer not to have all your app code in the app.py file.

See Multifile Support for more info on the chalicelib/ directory. Both the app.py and the chalicelib/
directory are intended for code that you write yourself.

14.8.2 3rd Party Packages

There are two options for handling python package dependencies:

• requirements.txt - During the packaging process, Chalice will install any packages it finds or can build com-
patible wheels for. Specifically all pure python packages as well as all packages that upload wheel files for the
manylinux1_x86_64 platform will be automatically installable.

• vendor/ - The contents of this directory are automatically added to the top level of the deployment package.

Chalice will also check for an optional vendor/ directory in the project root directory. The contents of this directory
are automatically included in the top level of the deployment package (see Examples for specific examples). The
vendor/ directory is helpful in these scenarios:

• You need to include custom packages or binary content that is not accessible via pip. These may be internal
packages that aren’t public.

• Wheel files are not available for a package you need from pip.

• A package is installable with requirements.txt but has optional c extensions. Chalice can build the
dependency without the c extensions, but if you want better performance you can vendor a version that is
compiled.

As a general rule of thumb, code that you write goes in either app.py or chalicelib/, and dependencies are
either specified in requirements.txt or placed in the vendor/ directory.

14.8. App Packaging 55

Python Serverless Microframework for AWS, Release 1.15.1

14.8.3 Examples

Suppose I have the following app structure:
.
-- app.py
-- chalicelib
| -- __init__.py
| -- utils.py
-- requirements.txt
-- vendor

-- internalpackage
-- __init__.py

And the requirements.txt file had one requirement:

$ cat requirements.txt
sortedcontainers==1.5.4

Then the final deployment package directory structure would look like this:
.
-- app.py
-- chalicelib
| -- __init__.py
| -- utils.py
-- internalpackage
| -- __init__.py
-- sortedcontainers

-- __init__.py

This directory structure is then zipped up and sent to AWS Lambda during the deployment process.

14.8.4 Cryptography Example

Note

Since the original version of this example was written, cryptography has released version 2.0 which does
have manylinux1 wheels available. This means if you want to use cryptography in a Chalice app all you
need to do is add cryptography or cryptography>=2.0 in your requirements.txt file.

This example will use version 1.9 of Cryptography because it is a good example of a library with C
extensions and no wheel files.

Below shows an example of how to use the cryptography 1.9 package in a Chalice app for the python3.6 lambda
environment.

Suppose you are on a Mac or Windows and want to deploy a Chalice app that depends on the cryptography==1.9
package. If you simply add it to your requirements.txt file and try to deploy it with chalice deploy you
will get the following warning during deployment:

$ cat requirements.txt
cryptography==1.9
$ chalice deploy
Updating IAM policy.
Updating lambda function...
Creating deployment package.

Could not install dependencies:
cryptography==1.9

56 Chapter 14. Topics

https://pypi.org/project/cryptography/1.9/

Python Serverless Microframework for AWS, Release 1.15.1

You will have to build these yourself and vendor them in
the chalice vendor folder.

Your deployment will continue but may not work correctly
if missing dependencies are not present. For more information:
http://chalice.readthedocs.io/en/latest/topics/packaging.html

This happened because the cryptography version 1.9 does not have wheel files available on PyPi, and has C
extensions. Since we are not on the same platform as AWS Lambda, the compiled C extensions Chalice built were
not compatible. To get around this we are going to leverage the vendor/ directory, and build the cryptography
package on a compatible linux system.

You can do this yourself by building cryptography on an Amazon Linux instance running in EC2. All of the
following commands were run inside a python 3.6 virtual environment.

• Download the source first:

$ pip download cryptography==1.9

This will download all the requirements into the current working directory. The directory should have the
following contents:

– asn1crypto-0.22.0-py2.py3-none-any.whl

– cffi-1.10.0-cp36-cp36m-manylinux1_x86_64.whl

– cryptography-1.9.tar.gz

– idna-2.5-py2.py3-none-any.whl

– pycparser-2.17.tar.gz

– six-1.10.0-py2.py3-none-any.whl

This is a complete set of dependencies required for the cryptography package. Most of these packages have
wheels that were downloaded, which means they can simply be put in the requirements.txt and Chalice
will take care of downloading them. That leaves cryptography itself and pycparser as the only two that
did not have a wheel file available for download.

• Next build the cryptography source package into a wheel file:

$ pip wheel cryptography-1.9.tar.gz

This will take a few seconds and build a wheel file for both cryptography and pycparser. The directory
should now have two additional wheel files:

– cryptography-1.9-cp36-cp36m-linux_x86_64.whl

– pycparser-2.17-py2.py3-none-any.whl

The cryptography wheel file has been built with a compatible architecture for Lambda (linux_x86_64)
and the pycparser has been built for any architecture which means it can also be automatically packaged by
Chalice if it is listed in the requirements.txt file.

• Download the cryptography wheel file from the Amazon Linux instance and unzip it into the vendor/
directory in the root directory of your Chalice app.

You should now have a project directory that looks like this:

$ tree
.
-- app.py
-- requirements.txt

14.8. App Packaging 57

Python Serverless Microframework for AWS, Release 1.15.1

-- vendor
-- cryptography
| -- ... Lots of files
|
-- cryptography-1.9.dist-info

-- DESCRIPTION.rst
-- METADATA
-- RECORD
-- WHEEL
-- entry_points.txt
-- metadata.json
-- top_level.txt

The requirements.txt file should look like this:

$ cat requirements.txt
cffi==1.10.0
six==1.10.0
asn1crypto==0.22.0
idna==2.5
pycparser==2.17

In your app.py file you can now import cryptography, and these dependencies will all get included when
the chalice deploy command is run.

14.9 Python Version Support

Chalice supports all versions of python supported by AWS Lambda, which is currently python2.7 and
python3.6.

Chalice will automatically pick which version of python to use for Lambda based on the major version of python you
are using. You don’t have to explicitly configure which version of python you want to use. For example:

$ python --version
Python 3.6.1
$ chalice new-project test-versions
$ cd test-versions
$ chalice package test-package
$ grep -C 3 python test-package/sam.json

"APIHandler": {
"Type": "AWS::Serverless::Function",
"Properties": {

"Runtime": "python3.6",
"Handler": "app.app",
"CodeUri": "./deployment.zip",
"Events": {

Similarly, if we were to run "chalice deploy" we'd
use python3.6 for the runtime.
$ chalice --debug deploy
Initiating first time deployment...
Deploying to: dev
...
"Runtime":"python3.6"
...
https://rest-api-id.execute-api.us-west-2.amazonaws.com/api/

58 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

In the example above, we’re using python 3.6.1 so chalice automatically selects the python3.6 runtime for lambda.
If we were using python 2.7.11, chalice would automatically select python2.7 as the runtime.

Chalice will emit a warning if the minor version does not match a python version supported by Lambda. Chalice will
select the closest Lambda version in this scenario, as shown in the table below.

Local Python Version Lambda Python Runtime
python2.7.10 python2.7
python2.7.11 python2.7
python2.7.12 python2.7
python2.7.13 python2.7
python3.3.6 python3.6
python3.4.6 python3.6
python3.5.3 python3.6
python3.6.0 python3.6
python3.6.1 python3.6

We strongly encourage you to develop your application using the same major/minor version of python you plan on
using on AWS Lambda.

14.10 Changing Python Runtime Versions

The version of the python runtime to use in AWS Lambda can be reconfigured whenever you deploy your chalice app.
This allows you to migrate to python3 in AWS Lambda by creating a new virtual environment that uses python3. For
example, suppose you have an existing chalice app that uses python2:

$ python --version
Python 2.7.12
$ chalice deploy
...
https://endpoint/api

To upgrade the application to use python3, create a python3 virtual environment and redeploy.

:: $ deactivate $ python3 -m venv /tmp/venv3 $ source /tmp/venv3/bin/activate $ python –version Python 3.6.1 $
chalice deploy ...

14.11 AWS CloudFormation Support

When you run chalice deploy, chalice will deploy your application using the AWS SDK for Python). Chalice
also provides functionality that allows you to manage deployments yourself using cloudformation. This is provided
via the chalice package command.

When you run this command, chalice will generate the AWS Lambda deployment package that contains your appli-
cation as well as a Serverless Application Model (SAM) template. You can then use a tool like the AWS CLI, or any
cloudformation deployment tools you use, to deploy your chalice application.

14.11.1 Considerations

Using the chalice package command is useful when you don’t want to use chalice deploy to manage your
deployments. There’s several reasons why you might want to do this:

• You have pre-existing infrastructure and tooling set up to manage cloudformation stacks.

14.10. Changing Python Runtime Versions 59

http://boto3.readthedocs.io/en/docs/
https://github.com/awslabs/serverless-application-model

Python Serverless Microframework for AWS, Release 1.15.1

• You want to integrate with other cloudformation stacks to manage all your AWS resources, including resources
outside of your chalice app.

• You’d like to integrate with AWS CodePipeline to automatically deploy changes when you push to a git repo.

Keep in mind that you can’t switch between chalice deploy and chalice package + CloudFormation for
deploying your app.

If you choose to use chalice package and CloudFormation to deploy your app, you won’t be able to switch
back to chalice deploy. Running chalice deploy would create an entirely new set of AWS resources (API
Gateway Rest API, AWS Lambda function, etc).

14.11.2 Template Merge

It’s a common use case to need to modify a Chalice generated template before deployment. Often to inject extra
resources, values, or configurations that are not supported directly by Chalice. It will always be the case that something
on AWS is not supported by Chalice directly that a consumer may want to interact with.

The package command can now be invoked with the --merge-template argument:

$ chalice package --merge-template extras.json out

This extras.json file should be a JSON formatted file which will be deep-merged on top of the sam.json that is generated
by Chalice.

For a simple example lets assume that we have the default new Chalice project and that extras.json has the following
content:

{
"Resources" : {
"MusicTable" : {

"Type" : "AWS::DynamoDB::Table",
"Properties" : {

"TableName" : "MusicData",
"AttributeDefinitions" : [
{

"AttributeName" : "Album",
"AttributeType" : "S"

},
{

"AttributeName" : "Artist",
"AttributeType" : "S"

}
],
"KeySchema" : [
{

"AttributeName" : "Album",
"KeyType" : "HASH"

},
{

"AttributeName" : "Artist",
"KeyType" : "RANGE"

}
],
"ProvisionedThroughput" : {
"ReadCapacityUnits" : "5",
"WriteCapacityUnits" : "5"

}
}

60 Chapter 14. Topics

https://aws.amazon.com/codepipeline/

Python Serverless Microframework for AWS, Release 1.15.1

},
"APIHandler": {

"Properties": {
"Environment": {
"Variables": {
"MUSIC_TABLE": {"Ref": "MusicTable"}

}
}

}
}

}
}

The generated template located at out/sam.json will have the DynamoDB table injected into the resource section, as
well as the MUSIC_TABLE environment variable added to the APIHandler Lambda function:
...

"APIHandler": {
"Type": "AWS::Serverless::Function",
"Properties": {

"Runtime": "python3.6",
"Handler": "app.app",
"CodeUri": "./deployment.zip",
"Tags": {
"aws-chalice": "version=1.10-:stage=dev:app=test"

},
"Timeout": 60,
"MemorySize": 128,
"Role": {
"Fn::GetAtt": [
"DefaultRole",
"Arn"

]
},
"Environment": {
"Variables": {

"MUSIC_TABLE": "MusicData"
}

}
}

},
...

This gives us the ability to inject arbitrary resources into our Chalice applications, and reference them from our
Chalice-deployed functions. We can now rely on Chalice’s policy auto-generation to generate a policy that allows
DynamoDB access, inject our own policy modifications through the same extras.json file, or specify a custom policy
using the config file.

14.11.3 Example

In this example, we’ll create a chalice app and deploy it using the AWS CLI.

First install the necessary packages:

$ virtualenv /tmp/venv
$. /tmp/venv/bin/activate
$ pip install chalice awscli

14.11. AWS CloudFormation Support 61

Python Serverless Microframework for AWS, Release 1.15.1

$ chalice new-project test-cfn-deploy
$ cd test-cfn-deploy

At this point we’ve installed chalice and the AWS CLI and we have a basic app created locally. Next we’ll run the
package command and look at its contents:

$ $ chalice package /tmp/packaged-app/
Creating deployment package.
$ ls -la /tmp/packaged-app/
-rw-r--r-- 1 j wheel 3355270 May 25 14:20 deployment.zip
-rw-r--r-- 1 j wheel 3068 May 25 14:20 sam.json

$ unzip -l /tmp/packaged-app/deployment.zip | tail -n 5
17292 05-25-17 14:19 chalice/app.py

283 05-25-17 14:19 chalice/__init__.py
796 05-25-17 14:20 app.py

-------- -------
9826899 723 files

$ head < /tmp/packaged-app/sam.json
{

"AWSTemplateFormatVersion": "2010-09-09",
"Outputs": {
"RestAPIId": {

"Value": {
"Ref": "RestAPI"

}
},
"APIHandlerName": {

"Value": {

As you can see in the above example, the package command created a directory that contained two files, a
deployment.zip file, which is the Lambda deployment package, and a sam.json file, which is the SAM tem-
plate that can be deployed using CloudFormation. Next we’re going to use the AWS CLI to deploy our app. To
this, we’ll first run the aws cloudformation package command, which will take our deployment.zip file and
upload to an S3 bucket we specify:

$ aws cloudformation package \
--template-file /tmp/packaged-app/sam.json \
--s3-bucket myapp-bucket \
--output-template-file /tmp/packaged-app/packaged.yaml

Now we can deploy our app using the aws cloudformation deploy command:

$ aws cloudformation deploy \
--template-file /tmp/packaged-app/packaged.yaml \
--stack-name test-cfn-stack \
--capabilities CAPABILITY_IAM

Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - test-cfn-stack

This will take a few minutes to complete, but once it’s done, the endpoint url will be available as an output:

$ aws cloudformation describe-stacks --stack-name test-cfn-stack \
--query "Stacks[].Outputs[?OutputKey=='EndpointURL'][] | [0].OutputValue"

"https://abc29hkq0i.execute-api.us-west-2.amazonaws.com/api/"

$ http "https://abc29hkq0i.execute-api.us-west-2.amazonaws.com/api/"

62 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 18
Content-Type: application/json
...

{
"hello": "world"

}

14.12 Terraform Support

When you run chalice deploy, chalice will deploy your application using the AWS SDK for Python). Chalice
also provides functionality that allows you to manage deployments yourself using terraform. This is provided via the
chalice package --pkg-format terraform command.

When you run this command, chalice will generate the AWS Lambda deployment package that contains your applica-
tion and a Terraform configuration file. You can then use the terraform cli to deploy your chalice application.

14.12.1 Considerations

Using the chalice package command is useful when you don’t want to use chalice deploy to manage your
deployments. There’s several reasons why you might want to do this:

• You have pre-existing infrastructure and tooling set up to manage Terraform deployments.

• You want to integrate with other Terraform resources to manage all your application resources, including re-
sources outside of your chalice app.

• You’d like to integrate with AWS CodePipeline to automatically deploy changes when you push to a git repo.

Keep in mind that you can’t switch between chalice deploy and chalice package + Terraform for deploy-
ing your app.

If you choose to use chalice package and Terraform to deploy your app, you won’t be able to switch back to
chalice deploy. Running chalice deploywould create an entirely new set of AWS resources (API Gateway
Rest API, AWS Lambda function, etc).

14.12.2 Example

In this example, we’ll create a chalice app and deploy it using the AWS CLI.

First install the necessary packages:

$ virtualenv /tmp/venv
$. /tmp/venv/bin/activate
$ pip install chalice awscli
$ chalice new-project test-tf-deploy
$ cd test-tf-deploy

At this point we’ve installed chalice and the AWS CLI and we have a basic app created locally. Next we’ll run the
package command:

14.12. Terraform Support 63

http://boto3.readthedocs.io/en/docs/
https://www.terraform.io
https://aws.amazon.com/codepipeline/

Python Serverless Microframework for AWS, Release 1.15.1

$ chalice package --pkg-format terraform /tmp/packaged-app/
Creating deployment package.
$ ls -la /tmp/packaged-app/
-rw-r--r-- 1 j wheel 3355270 May 25 14:20 deployment.zip
-rw-r--r-- 1 j wheel 3068 May 25 14:20 chalice.tf.json

$ unzip -l /tmp/packaged-app/deployment.zip | tail -n 5
17292 05-25-17 14:19 chalice/app.py

283 05-25-17 14:19 chalice/__init__.py
796 05-25-17 14:20 app.py

-------- -------
9826899 723 files

As you can see in the above example, the package --pkg-format command created a directory that contained
two files, a deployment.zip file, which is the Lambda deployment package, and a chalice.tf.json file,
which is the Terraform template that can be deployed using Terraform. Next we’re going to use the Terraform CLI to
deploy our app.

Note terraform will deploy run against all terraform files in this directory, so we can add additional resources
for our application by adding terraform additional files here. The Chalice terraform template includes two static
data values (app and stage names) that we can optionally use when constructing these additional resources, ie.
${data.null_data_source.chalice.outputs.app}

First let’s run Terraform init to install the AWS Terraform Provider:

$ cd /tmp/packaged-app
$ terraform init

Now we can deploy our app using the terraform apply command:

$ terraform apply
data.aws_region.chalice: Refreshing state...
data.aws_caller_identity.chalice: Refreshing state...

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create

... (omit plan output)

Plan: 14 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

... (omit apply output)

Apply complete! Resources: 14 added, 0 changed, 0 destroyed.

Outputs:

EndpointURL = https://7bnxriulj5.execute-api.us-east-1.amazonaws.com/dev

This will take a minute to complete, but once it’s done, the endpoint url will be available as an output which we can
then curl:

64 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

$ http "$(terraform output EndpointURL)"
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 18
Content-Type: application/json
...

{
"hello": "world"

}

14.13 Authorization

Chalice supports multiple mechanisms for authorization. This topic covers how you can integrate authorization into
your Chalice applications.

In Chalice, all the authorizers are configured per-route and specified using the authorizer kwarg to an
@app.route() call. You control which type of authorizer to use based on what’s passed as the authorizer
kwarg. You can use the same authorizer instance for multiple routes.

The first set of authorizers chalice supports cover the scenario where you have some existing authorization mechanism
that you just want your Chalice app to use.

Chalice also supports built-in authorizers, which allows Chalice to manage your custom authorizers as part of
chalice deploy. This is covered in the Built-in Authorizers section.

14.13.1 AWS IAM Authorizer

The IAM Authorizer allows you to control access to API Gateway with IAM permissions

To associate an IAM authorizer with a route in chalice, you use the IAMAUthorizer class:

from chalice import IAMAuthorizer

authorizer = IAMAuthorizer()

@app.route('/iam-auth', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"success": True}

See the API Gateway documentation for more information on controlling access to API Gateway with IAM permis-
sions.

14.13.2 Amazon Cognito User Pools

In addition to using IAM roles and policies with the IAMAuthorizer you can also use a Cognito user pools to
control who can access your Chalice app. A cognito user pool serves as your own identity provider to maintain a user
directory.

To integrate Cognito user pools with Chalice, you’ll need to have an existing cognito user pool configured.

from chalice import CognitoUserPoolAuthorizer

authorizer = CognitoUserPoolAuthorizer(
'MyPool', provider_arns=['arn:aws:cognito:...:userpool/name'])

14.13. Authorization 65

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/permissions.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html

Python Serverless Microframework for AWS, Release 1.15.1

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"success": True}

For more information about using Cognito user pools with API Gateway, see the Use Amazon Cognito User Pools
documentation.

14.13.3 Custom Authorizers

API Gateway also lets you write custom authorizers using a Lambda function. You can configure a Chalice route
to use a pre-existing Lambda function as a custom authorizer. If you also want to write and manage your Lambda
authorizer using Chalice, see the next section, Built-in Authorizers.

To connect an existing Lambda function as a custom authorizer in chalice, you use the CustomAuthorizer class:

from chalice import CustomAuthorizer

authorizer = CustomAuthorizer(
'MyCustomAuth', header='Authorization',
authorizer_uri=('arn:aws:apigateway:region:lambda:path/2015-03-31'

'/functions/arn:aws:lambda:region:account-id:'
'function:FunctionName/invocations'))

@app.route('/custom-auth', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"success": True}

14.13.4 Built-in Authorizers

The IAMAuthorizer, CognitoUserPoolAuthorizer, and the CustomAuthorizer classes are all for
cases where you have existing resources for managing authorization and you want to wire them together with your
Chalice app. A Built-in authorizer is used when you’d like to write your custom authorizer in Chalice, and have the
additional Lambda functions managed when you run chalice deploy/delete. This section will cover how to
use the built-in authorizers in chalice.

Creating an authorizer in chalice requires you use the @app.authorizer decorator to a function. The function
must accept a single arg, which will be an instance of AuthRequest. The function must return a AuthResponse.
As an example, we’ll port the example from the API Gateway documentation. First, we’ll show the code and then
walk through it:

from chalice import Chalice, AuthResponse

app = Chalice(app_name='demoauth1')

@app.authorizer()
def demo_auth(auth_request):

token = auth_request.token
This is just for demo purposes as shown in the API Gateway docs.
Normally you'd call an oauth provider, validate the
jwt token, etc.
In this exampe, the token is treated as the status for demo
purposes.
if token == 'allow':

return AuthResponse(routes=['/'], principal_id='user')

66 Chapter 14. Topics

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Python Serverless Microframework for AWS, Release 1.15.1

else:
By specifying an empty list of routes,
we're saying this user is not authorized
for any URLs, which will result in an
Unauthorized response.
return AuthResponse(routes=[], principal_id='user')

@app.route('/', authorizer=demo_auth)
def index():

return {'context': app.current_request.context}

In the example above we define a built-in authorizer by decorating the demo_auth function with the
@app.authorizer() decorator. Note you must use @app.authorizer() and not @app.authorizer. A
built-in authorizer function has this type signature:

def auth_handler(auth_request: AuthRequest) -> AuthResponse: ...

Within the auth handler you must determine if the request is authorized or not. The AuthResponse contains the
allowed URLs as well as the principal id of the user. You can optionally return a dictionary of key value pairs (as the
context kwarg). This dictionary will be passed through on subsequent requests. In our example above we’re not
using the context dictionary. API Gateway will convert all the values in the context dictionary to string values.

Now let’s deploy our app. As usual, we just need to run chalice deploy and chalice will automatically deploy
all the necessary Lambda functions for us.

Now when we try to make a request, we’ll get an Unauthorized error:

$ http https://api.us-west-2.amazonaws.com/api/
HTTP/1.1 401 Unauthorized

{
"message": "Unauthorized"

}

If we add the appropriate authorization header, we’ll see the call succeed:

$ http https://api.us-west-2.amazonaws.com/api/ 'Authorization: allow'
HTTP/1.1 200 OK

{
"context": {

"accountId": "12345",
"apiId": "api",
"authorizer": {

"principalId": "user"
},
"httpMethod": "GET",
"identity": {

"accessKey": null,
"accountId": null,
"apiKey": "",
"caller": null,
"cognitoAuthenticationProvider": null,
"cognitoAuthenticationType": null,
"cognitoIdentityId": null,
"cognitoIdentityPoolId": null,
"sourceIp": "1.1.1.1",
"user": null,

14.13. Authorization 67

Python Serverless Microframework for AWS, Release 1.15.1

"userAgent": "HTTPie/0.9.9",
"userArn": null

},
"path": "/api/",
"requestId": "d35d2063-56be-11e7-9ce1-dd61c24a3668",
"resourceId": "id",
"resourcePath": "/",
"stage": "dev"

}
}

The low level API for API Gateway’s custom authorizer feature requires that an IAM policy must be returned. The
AuthResponse class we’re using is a wrapper over building the IAM policy ourself. If you want low level control
and would prefer to construct the IAM policy yourself you can return a dictionary of the IAM policy instead of an
instance of AuthResponse. If you do that, the dictionary is returned without modification back to API Gateway.

For more information on custom authorizers, see the Use API Gateway Custom Authorizers page in the API Gateway
user guide.

14.14 Lambda Event Sources

14.14.1 Scheduled Events

Chalice has support for scheduled events. This feature allows you to periodically invoke a lambda function based on
some regular schedule. You can specify a fixed rate or a cron expression.

To create a scheduled event in chalice, you use the @app.schedule() decorator. Let’s look at an example.

app = chalice.Chalice(app_name='foo')

@app.schedule('rate(1 hour)')
def every_hour(event):

print(event.to_dict())

In this example, we have a single lambda function that we want automatically invoked every hour. When you run
chalice deploy Chalice will create a lambda function as well as the necessary CloudWatch events/rules such that
the every_hour function is invoked every hour.

The Chalice.schedule() method accepts either a string or an instance of Rate or Cron. For example:

app = chalice.Chalice(app_name='foo')

@app.schedule(Rate(1, unit=Rate.HOURS))
def every_hour(event):

print(event.to_dict())

The function you decorate must accept a single argument, which will be of type CloudWatchEvent.

You can use the schedule() decorator multiple times in your chalice app. Each schedule() decorator will result
in a new lambda function and associated CloudWatch event rule. For example:

app = chalice.Chalice(app_name='foo')

@app.schedule(Rate(1, unit=Rate.HOURS))
def every_hour(event):

print(event.to_dict())

68 Chapter 14. Topics

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Python Serverless Microframework for AWS, Release 1.15.1

@app.schedule(Rate(2, unit=Rate.HOURS))
def every_two_hours(event):

print(event.to_dict())

In the app above, chalice will create two lambda functions, and configure every_hour to be invoked once an hour,
and every_two_hours to be invoked once every two hours.

14.14.2 CloudWatch Events

You can configure a lambda function to subscribe to any CloudWatch Event <https://amzn.to/2SCgWA6>.

To subscribe to a CloudWatch Event in chalice, you use the @app.on_cw_event() decorator. Let’s look at an
example.

app = chalice.Chalice(app_name='foo')

@app.on_cw_event({"source": ["aws.codecommit"]})
def on_code_commit_changes(event):

print(event.to_dict())

In this example, we have a single lambda function that we subscribe to all events from the AWS Code Commit service.
The first parameter to the decorator is the event pattern that will be used to filter the events sent to the function.

See the CloudWatch Event pattern docs for additional syntax and examples https://amzn.to/2OlqZso

The function you decorate must accept a single argument, which will be of type CloudWatchEvent.

14.14.3 S3 Events

You can configure a lambda function to be invoked whenever certain events happen in an S3 bucket. This uses the
event notifications feature provided by Amazon S3.

To configure this, you just tell Chalice the name of an existing S3 bucket, along with what events should trigger the
lambda function. This is done with the Chalice.on_s3_event() decorator.

Here’s an example:

from chalice import Chalice

app = chalice.Chalice(app_name='s3eventdemo')
app.debug = True

@app.on_s3_event(bucket='mybucket-name',
events=['s3:ObjectCreated:*'])

def handle_s3_event(event):
app.log.debug("Received event for bucket: %s, key: %s",

event.bucket, event.key)

In this example above, Chalice connects the S3 bucket to the handle_s3_event Lambda function such that when-
ver an object is uploaded to the mybucket-name bucket, the Lambda function will be invoked. This example also
uses the .bucket and .key attribute from the event parameter, which is of type S3Event.

It will automatically create the appropriate S3 notification configuration as needed. Chalice will also leave any existing
notification configuration on the mybucket-name untouched. It will only merge in the additional configuration
needed for the handle_s3_event Lambda function.

14.14. Lambda Event Sources 69

https://amzn.to/2OlqZso
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

Python Serverless Microframework for AWS, Release 1.15.1

Warning: This feature only works when using chalice deploy. Because you configure the lambda function with
the name of an existing S3 bucket, it is not possible to describe this using a CloudFormation/SAM template. The
chalice package command will fail. You will eventually be able to request that chalice create a bucket for
you, which will support the chalice package command.

The function you decorate must accept a single argument, which will be of type S3Event.

14.14.4 SNS Events

You can configure a lambda function to be automatically invoked whenever something publishes to an SNS topic.
Chalice will automatically handle creating the lambda function, subscribing the lambda function to the SNS topic, and
modifying the lambda function policy to allow SNS to invoke the function.

To configure this, you just need the name of an existing SNS topic you’d like to subscribe to. The SNS topic must
already exist.

Below is an example of how to set this up. The example uses boto3 to create the SNS topic. If you don’t have boto3
installed in your virtual environment, be sure to install it with:

$ pip install boto3

First, we’ll create an SNS topic using boto3.

$ python
>>> import boto3
>>> sns = boto3.client('sns')
>>> sns.create_topic(Name='my-demo-topic')
{'TopicArn': 'arn:aws:sns:us-west-2:12345:my-demo-topic',
'ResponseMetadata': {}}

Next, we’ll create our chalice app:

$ chalice new-project chalice-demo-sns
$ cd chalice-demo-sns/

We’ll update the app.py file to use the on_sns_message decorator:

from chalice import Chalice

app = chalice.Chalice(app_name='chalice-sns-demo')
app.debug = True

@app.on_sns_message(topic='my-demo-topic')
def handle_sns_message(event):

app.log.debug("Received message with subject: %s, message: %s",
event.subject, event.message)

We can now deploy our chalice app:

$ chalice deploy
Creating deployment package.
Creating IAM role: chalice-demo-sns-dev
Creating lambda function: chalice-demo-sns-dev-handle_sns_message
Subscribing chalice-demo-sns-dev-handle_sns_message to SNS topic my-demo-topic
Resources deployed:

- Lambda ARN: arn:aws:lambda:us-west-2:123:function:...

70 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

And now we can test our app by publishing a few SNS messages to our topic. We’ll do this using boto3. In the
example below, we’re using list_topics() to find the ARN associated with our topic name before calling the
publish() method.

$ python
>>> import boto3
>>> sns = boto3.client('sns')
>>> topic_arn = [t['TopicArn'] for t in sns.list_topics()['Topics']
... if t['TopicArn'].endswith(':my-demo-topic')][0]
>>> sns.publish(Message='TestMessage1', Subject='TestSubject1',
... TopicArn=topic_arn)
{'MessageId': '12345', 'ResponseMetadata': {}}
>>> sns.publish(Message='TestMessage2', Subject='TestSubject2',
... TopicArn=topic_arn)
{'MessageId': '54321', 'ResponseMetadata': {}}

To verify our function was called correctly, we can use the chalice logs command:

$ chalice logs -n handle_sns_message
2018-06-28 17:49:30.513000 547e0f chalice-demo-sns - DEBUG - Received message with subject: TestSubject1, message: TestMessage1
2018-06-28 17:49:40.391000 547e0f chalice-demo-sns - DEBUG - Received message with subject: TestSubject2, message: TestMessage2

In this example we used the SNS topic name to register our handler, but you can also use the topic arn. This can be
useful if your topic is in another region or account.

14.14.5 SQS Events

You can configure a lambda function to be invoked whenever messages are available on an SQS queue. To configure
this, use the Chalice.on_sqs_message() decorator and provide the name of the SQS queue and an optional
batch size.

The message visibility timeout of your SQS queue must be greater than or equal to the lambda timeout. The default
message visibility timeout when you create an SQS queue is 30 seconds, and the default timeout for a Lambda function
is 60 seconds, so you’ll need to modify one of these values in order to successfully connect an SQS queue to a Lambda
function.

You can check the visibility timeout of your queue using the GetQueueAttributes API call. Using the AWS
CLI, you can run this command to check the value:

$ aws sqs get-queue-attributes \
--queue-url https://us-west-2.queue.amazonaws.com/1/testq \
--attribute-names VisibilityTimeout

{
"Attributes": {

"VisibilityTimeout": "30"
}

}

You can set the visibility timeout of your SQS queue using the SetQueueAttributes API call. Again using the
AWS CLI you can run this command:

$ aws sqs set-queue-attributes \
--queue-url https://us-west-2.queue.amazonaws.com/1/testq \
--attributes VisibilityTimeout=60

If you would prefer to change the timeout of your lambda function instead, you can specify this timeout value using
the lambda_timeout config key if your .chalice/config.json file. See Lambda Specific Configuration for

14.14. Lambda Event Sources 71

https://docs.aws.amazon.com/cli/latest/reference/sqs/get-queue-attributes.html
https://docs.aws.amazon.com/cli/latest/reference/sqs/get-queue-attributes.html

Python Serverless Microframework for AWS, Release 1.15.1

a list of all supported lambda configuration values in chalice. In this example below, we’re setting the timeout of our
handle_sqs_message lambda function to 30 seconds:

$ cat .chalice/config.json
{

"stages": {
"dev": {

"lambda_functions": {
"handle_sqs_message": {
"lambda_timeout": 30

}
}

}
},
"version": "2.0",
"app_name": "chalice-sqs-demo"

}

In this example below, we’re connecting the handle_sqs_message lambda function to the my-queue SQS
queue. Note that we are specifying the queue name, not the queue URL or queue ARN. If you are connecting your
lambda function to a FIFO queue, make sure you specify the .fifo suffix, e.g. my-queue.fifo.

from chalice import Chalice

app = chalice.Chalice(app_name='chalice-sqs-demo')
app.debug = True

@app.on_sqs_message(queue='my-queue', batch_size=1)
def handle_sqs_message(event):

for record in event:
app.log.debug("Received message with contents: %s", record.body)

Whenever a message is sent to the SQS queue our function will be automatically invoked. The function argument
is an SQSEvent object, and each record in the example above is of type SQSRecord. Lambda takes care of
automatically scaling your function as needed. See Understanding Scaling Behavior for more information on how
Lambda scaling works.

If your lambda functions completes without raising an exception, then Lambda will automatically delete all the mes-
sages associated with the SQSEvent. You don’t need to manually call sqs.delete_message() in your lambda
function. If your lambda function raises an exception, then Lambda won’t delete any messages, and once the visibility
timeout has been reached, the messages will be available again in the SQS queue. Note that if you are using a batch
size of more than one, the entire batch succeeds or fails. This means that it is possible for your lambda function to see
a message multiple times, even if it’s successfully processed the message previously. There are a few options available
to mitigate this:

• Use a batch size of 1 (the default value).

• Use a separate data store to check if you’ve already processed an SQS message. You can use services such as
Amazon DynamoDB or Amazon ElastiCache.

• Manually call sqs.delete_message() in your Lambda function once you’ve successfully processed a
message.

For more information on Lambda and SQS, see the AWS documentation.

14.15 Pure Lambda Functions

Chalice provides abstractions over AWS Lambda functions, including:

72 Chapter 14. Topics

https://docs.aws.amazon.com/lambda/latest/dg/scaling.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

Python Serverless Microframework for AWS, Release 1.15.1

• An API handler the coordinates with API Gateway for creating rest APIs.

• A custom authorizer that allows you to integrate custom auth logic in your rest API.

• A scheduled event that includes managing the CloudWatch Event rules, targets, and permissions.

However, chalice also supports managing pure Lambda functions that don’t have any abstractions built on top. This
is useful if you want to create a Lambda function for something that’s not supported by chalice or if you just want to
create Lambda functions but don’t want to manage handling dependencies and deployments yourself.

In order to do this, you can use the Chalice.lambda_function() decorator to denote that this python function
is a pure lambda function that should be invoked as is, without any input or output mapping. When you use this
function, you must provide a function that maps to the same function signature expected by AWS Lambda as defined
here.

Let’s look at an example.

app = chalice.Chalice(app_name='foo')

@app.route('/')
def index():

return {'hello': 'world'}

@app.lambda_function()
def custom_lambda_function(event, context):

Anything you want here.
return {}

@app.lambda_function(name='MyFunction')
def other_lambda_function(event, context):

Anything you want here.
return {}

In this example, we’ve updated the starter hello world app with two extra Lambda functions. When you run chalice
deploy Chalice will create three Lambda functions. The first lambda function is for the API handler used by API
gateway. The second and third lambda function will be pure lambda functions. These two additional lambda functions
won’t be hooked up to anything. You’ll need to manage connecting them to any additional AWS Resources on your
own.

14.16 Blueprints

Chalice blueprints are used to organize your application into logical components. Using a blueprint, you define your
resources and decorators in modules outside of your app.py. You then register a blueprint in your main app.py
file. Blueprints support any decorator available on an application object.

Note: The Chalice blueprints are conceptually similar to Blueprints in Flask. Flask blueprints allow you to define a
set of URL routes separately from the main Flask object. This concept is extended to all resources in Chalice. A
Chalice blueprint can have Lambda functions, event handlers, built-in authorizers, etc. in addition to a collection of
routes.

14.16.1 Example

In this example, we’ll create a blueprint with part of our routes defined in a separate file. First, let’s create an applica-
tion:

14.16. Blueprints 73

https://docs.aws.amazon.com/lambda/latest/dg/python-programming-model-handler-types.html
https://docs.aws.amazon.com/lambda/latest/dg/python-programming-model-handler-types.html
https://flask.palletsprojects.com/blueprints/

Python Serverless Microframework for AWS, Release 1.15.1

$ chalice new-project blueprint-demo
$ cd blueprint-demo
$ mkdir chalicelib
$ touch chalicelib/__init__.py
$ touch chalicelib/blueprints.py

Next, we’ll open the chalicelib/blueprints.py file:

from chalice import Blueprint

extra_routes = Blueprint(__name__)

@extra_routes.route('/foo')
def foo():

return {'foo': 'bar'}

The __name__ is used to denote the import path of the blueprint. This name must match the import name of the
module so the function can be properly imported when running in Lambda. We’ll now import this module in our
app.py and register this blueprint. We’ll also add a route in our app.py directly:

from chalice import Chalice
from chalicelib.blueprints import extra_routes

app = Chalice(app_name='blueprint-demo')
app.register_blueprint(extra_routes)

@app.route('/')
def index():

return {'hello': 'world'}

At this point, we’ve defined two routes. One route, /, is directly defined in our app.py file. The other route,
/foo is defined in chalicelib/blueprints.py. It was added to our Chalice app when we registered it via
app.register_blueprint(extra_routes).

We can deploy our application to verify this works as expected:

$ chalice deploy
Creating deployment package.
Creating IAM role: blueprint-demo-dev
Creating lambda function: blueprint-demo-dev
Creating Rest API
Resources deployed:

- Lambda ARN: arn:aws:lambda:us-west-2:1234:function:blueprint-demo-dev
- Rest API URL: https://rest-api.execute-api.us-west-2.amazonaws.com/api/

We should now be able to request the / and /foo routes:

$ http https://rest-api.execute-api.us-west-2.amazonaws.com/api/
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 17
Content-Type: application/json
Date: Sat, 22 Dec 2018 01:05:48 GMT
Via: 1.1 5ab5dc09da67e3ea794ec8a82992cc89.cloudfront.net (CloudFront)
X-Amz-Cf-Id: Cdsow9--fnTH5EdjkjWBMWINCCMD4nGmi4S_3iMYMK0rpc8Mpiymgw==
X-Amzn-Trace-Id: Root=1-5c1d8dec-f1ef3ee83c7c654ca7fb3a70;Sampled=0

74 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

X-Cache: Miss from cloudfront
x-amz-apigw-id: SSMc6H_yvHcFcEw=
x-amzn-RequestId: b7bd0c87-0585-11e9-90cf-59b71c1a1de1

{
"hello": "world"

}

$ http https://rest-api.execute-api.us-west-2.amazonaws.com/api/foo
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 13
Content-Type: application/json
Date: Sat, 22 Dec 2018 01:05:51 GMT
Via: 1.1 95b0ac620fa3a80ee590ecf1cda1c698.cloudfront.net (CloudFront)
X-Amz-Cf-Id: HX4l1BNdWvYDRXan17PFZya1vaomoJel4rP7d8_stdw2qT50v7Iybg==
X-Amzn-Trace-Id: Root=1-5c1d8def-214e7f681ff82c00fd81f37a;Sampled=0
X-Cache: Miss from cloudfront
x-amz-apigw-id: SSMdXF40vHcF-mg=
x-amzn-RequestId: b96f77bf-0585-11e9-b229-01305cd40040

{
"foo": "bar"

}

14.16.2 Blueprint Registration

The app.register_blueprint function accepts two optional arguments, name_prefix and url_prefix.
This allows you to register the resources in your blueprint at a certain url and name prefix. If you specify
url_prefix, any routes defined in your blueprint will have the url_prefix prepended to it. If you specify
the name_prefix, any Lambda functions created will have the name_prefix prepended to the resource name.

Note: The name_prefix parameter does not apply to the Lambda function associated with API Gateway, which is
anything decorated with @app.route().

14.16.3 Advanced Example

Let’s create a more advanced example. If this application, let’s say we want to organize our application into separate
modules for our API and our event sources. We can create an app with these files:

$ ls -la chalicelib/
__init__.py
api.py
events.py

The contents of api.py are:

from chalice import Blueprint

myapi = Blueprint(__name__)

@myapi.route('/')

14.16. Blueprints 75

Python Serverless Microframework for AWS, Release 1.15.1

def index():
return {'hello': 'world'}

@myapi.route('/foo')
def index():

return {'foo': 'bar'}

The contents of events.py are:

from chalice import Blueprint

myevents = Blueprint(__name__)

@myevents.schedule('rate(5 minutes)')
def cron(event):

pass

@myevents.on_sns_message('MyTopic')
def handle_sns_message(event):

pass

In our app.py we’ll register these blueprints:

from chalice import Chalice
from chalicelib.events import myevents
from chalicelib.api import myapi

app = Chalice(app_name='blueprint-demo')
app.register_blueprint(myevents)
app.register_blueprint(myapi)

Now our app.py only registers the necessary blueprints, and all our resources are defined in blueprints.

14.17 Websockets

Warning: Websockets are considered an experimental API. You’ll need to opt-in to this feature using the
WEBSOCKETS feature flag:

app = Chalice('myapp')
app.experimental_feature_flags.extend([

'WEBSOCKETS'
])

See Experimental APIs for more information.

Chalice supports websockets through integration with an API Gateway Websocket API. If any of the decorators are
present in a Chalice app, then an API Gateway Websocket API will be deployed and wired to Lambda Functions.

76 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

14.17.1 Responding to websocket events

In a Chalice app the websocket API is accessed through the three decorators on_ws_connect, on_ws_message,
on_ws_disconnect. These handle a new websocket connection, an incoming message on an existing connection,
and a connection being cleaned up respectively.

A decorated websocket handler function takes one argument event with the type WebsocketEvent. This class allows
easy access to information about the API Gateway Websocket API, and information about the particular socket the
handler is being invoked to serve.

Below is a simple working example application that prints to CloudWatch Logs for each of the events.

from boto3.session import Session
from chalice import Chalice

app = Chalice(app_name='test-websockets')
app.experimental_feature_flags.update([

'WEBSOCKETS',
])
app.websocket_api.session = Session()

@app.on_ws_connect()
def connect(event):

print('New connection: %s' % event.connection_id)

@app.on_ws_message()
def message(event):

print('%s: %s' % (event.connection_id, event.body))

@app.on_ws_disconnect()
def disconnect(event):

print('%s disconnected' % event.connection_id)

14.17.2 Sending a message over a websocket

To send a message to a websocket client Chalice, use the app.websocket_api.send() method. This method will work
in any of the decorated functions outlined in the above section.

Two pieces of information are needed to send a message. The identifier of the websocket, and the contents for the
message. Below is a simple example that when it receives a message, it sends back the message "I got your
message!" over the same socket.

from boto3.session import Session
from chalice import Chalice

app = Chalice(app_name='test-websockets')
app.experimental_feature_flags.update([

'WEBSOCKETS',
])
app.websocket_api.session = Session()

@app.on_ws_message()
def message(event):

app.websocket_api.send(event.connection_id, 'I got your message!')

14.17. Websockets 77

Python Serverless Microframework for AWS, Release 1.15.1

See Websocket Tutorials for completely worked example applications.

14.18 Continuous Deployment (CD)

Chalice can be used to set up a basic Continuous Deployment pipeline. The chalice deploy command is good for
getting up and running quickly with Chalice, but in a team environment properly managing permissions and sharing
and updating the deployed.json file will get messy.

One way to scale up your chalice app is to create a continuous deployment pipeline. The pipeline can run tests on
code changes and, if they pass, promote the new build to a testing stage. More checks can be put in place to manually
promote a build to production, or you can do so automatically. This model greatly simplifies managing what resources
belong to your Chalice app as they are all stored in the Continuous Deployment pipeline.

Chalice can generate a CloudFormation template that will create a starter CD pipeline. It contains a CodeCommit
repo, a CodeBuild stage for packaging your chalice app, and a CodePipeline stage to deploy your application using
CloudFormation.

14.18.1 Usage example

Setting up the deployment pipeline is a two step process. First use the chalice generate-pipeline command
to generate a base CloudFormation template. Second use the AWS CLI to deploy the CloudFormation template using
the aws cloudformation deploy command. Below is an example.

$ chalice generate-pipeline pipeline.json
$ aws cloudformation deploy --stack-name mystack

--template-file pipeline.json --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - mystack

Once the CloudFormation template has finished creating the stack, you will have several new AWS resources that
make up a bare bones CD pipeline.

• CodeCommit Repository - The CodeCommit repository is the entrypoint into the pipeline. Any code you want
to deploy should be pushed to this remote.

• CodePipeline Pipeline - The CodePipeline is what coordinates the build process, and pushes the released code
out.

• CodeBuild Project - The CodeBuild project is where the code bundle is built that will be pushed to Lambda.
The default CloudFormation template will create a CodeBuild stage that builds a package using chalice
package and then uploads those artifacts for CodePipeline to deploy.

• S3 Buckets - Two S3 buckets are created on your behalf.

– artifactbucketstore - This bucket stores artifacts that are built by the CodeBuild project. The only artifact
by default is the transformed.yaml created by the aws cloudformation package command.

– applicationbucket - Stores the application bundle after the Chalice application has been packaged in the
CodeBuild stage.

• Each resource is created with all the required IAM roles and policies.

78 Chapter 14. Topics

https://aws.amazon.com/codecommit/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codebuild/

Python Serverless Microframework for AWS, Release 1.15.1

14.18.2 CodeCommit repository

The CodeCommit repository can be added as a git remote for deployment. This makes it easy to kick off deployments.
The developer doing the deployment only needs to push the release code up to the CodeCommit repository master
branch. All the developer needs is keys that allow for push access to the CodeCommit repository. This is a lot easier
than managing a set of deployed.json resources across a repsoitory and manually doing chalice deploy
whenever a change needs to be deployed.

The default CodeCommit repository that is created is empty, you will have to populate it with the Chalice application
code. Permissions will also need to be set up, you can find the documentation on how to do that here .

14.18.3 CodePipeline

CodePipeline is the main coordinator between all the other resources. It watches for changes on the CodeCommit
repository, and triggers builds in the CodeBuild project. If the build succeeds then it will start a CloudFormation
deployment of the built artifacts to a beta stage. This should be treated as a starting point, not a fully featured CD
system.

14.18.4 CodeBuild build script

By default Chalice will create the CodeBuild project with a default buildspec that does the following.

version: 0.1
phases:

install:
commands:
- sudo pip install --upgrade awscli
- aws --version
- sudo pip install chalice
- sudo pip install -r requirements.txt
- chalice package /tmp/packaged
- aws cloudformation package --template-file

tmp/packaged/sam.json --s3-bucket ${APP_S3_BUCKET}
--output-template-file transformed.yaml

artifacts:
type: zip
files:
- transformed.yaml

The CodeBuild stage installs both the AWS CLI and Chalice, then creates a package out of your chalice project,
pushing the package to the application S3 bucket that was created for you. The transformed CloudFormation template
is the only artifact, and can be run by CodePipeline after the build has succeeded.

14.18.5 Deploying to beta stage

Once the CodeBuild stage has finished building the Chalice package and creating the transformed.yaml, Code-
Pipeline will take these artifacts and use them to create or update the beta stage. The transformed.yaml is a
CloudFormation template that CodePipeline will execute, all the code it references has been uploaded to the applica-
tion bucket by the AWS CLI in the CodeBuild stage, so this is the only artifact we need.

Once the CodePipeline beta build stage is finished, the beta version of the app is deployed and ready for testing.

14.18. Continuous Deployment (CD) 79

https://docs.aws.amazon.com/codebuild/latest/userguide/setting-up.html

Python Serverless Microframework for AWS, Release 1.15.1

14.18.6 Extending

It is recommended to use this pipeline as a starting point. The default template does not run any tests on the Chalice
app before deploying to beta. There is also no mechanism provided by Chalice for a production stage. Ideally the
CodeBuild stage would be used to run unit and functional tests before deploying to beta. After the beta stage is up,
integration tests can be run against that endpoint, and if they all pass the beta stage could be promoted to a production
stage using the CodePipleine manual approval feature.

14.19 Experimental APIs

Chalice maintains backwards compatibility for all features that appear in this documentation. Any Chalice application
using version 1.x will continue to work for all future versions of 1.x.

We also believe that Chalice has a lot of potential for new ideas and APIs, many of which will take several iterations
to get right. We may implement a new idea and need to make changes based on customer usage and feedback. This
may include backwards incompatible changes all the way up to the removal of a feature.

To accommodate these new features, Chalice has support for experimental APIs, which are features that are added
to Chalice on a provisional basis. Because these features may include backwards incompatible changes, you must
explicitly opt-in to using these features. This makes it clear that you are using an experimental feature that may
change.

14.19.1 Opting-in to Experimental APIs

Each experimental feature in chalice has a name associated with it. To opt-in to an experimental API, you must have
the feature name to the experimental_feature_flags attribute on your app object. This attribute’s type is a
set of strings.

from chalice import Chalice

app = Chalice('myapp')
app.experimental_feature_flags.update([

'MYFEATURE1',
'MYFEATURE2',

])

If you use an experimental API without opting-in, you will receive a message whenever you run a Chalice CLI
command. The error message tells you which feature flags you need to add:

$ chalice deploy
You are using experimental features without explicitly opting in.
Experimental features do not guarantee backwards compatibility and may be removed in the future.
If you still like to use these experimental features, you can opt-in by adding this to your app.py file:

app.experimental_feature_flags.update([
'FEATURE_FLAG_NAME'

])

See https://chalice.readthedocs.io/en/latest/topics/experimental.rst for more details.

The feature flag only happens when running CLI commands. There are no runtime checks for experimental features
once your application is deployed.

80 Chapter 14. Topics

Python Serverless Microframework for AWS, Release 1.15.1

14.19.2 List of Experimental APIs

In the table below, the “Feature Flag Name” column is the value you must add to the
app.experimental_feature_flags attribute. The status of an experimental API can be:

• Trial - You must explicitly opt-in to use this feature.

• Accepted - This feature has graduated from an experimental feature to a fully supported, backwards compat-
ible feature in Chalice. Accepted features still appear in the table for auditing purposes.

• Rejected - This feature has been removed.

Table 14.1: Experimental APIs

Feature Feature Flag Name Version Added Version Finalized Status GitHub Issue(s)
Blueprints BLUEPRINTS 1.7.0 1.15.0 Accepted #1023, #651
Websockets WEBSOCKETS 1.10.0 n/a Trial #1041, #1017

See the original discussion for more background information and alternative proposals.

14.19. Experimental APIs 81

https://github.com/aws/chalice/pull/1023
https://github.com/aws/chalice/pull/651
https://github.com/aws/chalice/pull/1041
https://github.com/aws/chalice/issues/1017
https://github.com/aws/chalice/issues/1019

Python Serverless Microframework for AWS, Release 1.15.1

82 Chapter 14. Topics

CHAPTER 15

API Reference

15.1 Chalice

class Chalice(app_name)
This class represents a chalice application. It provides:

•The ability to register routes using the route() method.

•Within a view function, the ability to introspect the current request using the current_request at-
tribute which is an instance of the Request class.

current_request
An object of type Request. This value is only set when a view function is being called. This attribute
can be used to introspect the current HTTP request.

api
An object of type APIGateway . This attribute can be used to control how apigateway interprets
Content-Type headers in both requests and responses.

lambda_context
A Lambda context object that is passed to the invoked view by AWS Lambda. You can find out more about
this object by reading the lambda context object documentation.

Note: This is only set on @app.route handlers. For other handlers it will be None. Instead the event
parameter will have a context property. For example S3Event.context.

debug
A boolean value that enables debugging. By default, this value is False. If debugging is true, then internal
errors are returned back to the client. Additionally, debug log messages generated by the framework will
show up in the cloudwatch logs. Example usage:

from chalice import Chalice

app = Chalice(app_name="appname")
app.debug = True

websocket_api
An object of type WebsocketAPI. This attribute can be used to send messages to websocket clients
connected through API Gateway.

route(path, **options)
Register a view function for a particular URI path. This method is intended to be used as a decorator for a

83

https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html

Python Serverless Microframework for AWS, Release 1.15.1

view function. For example:

from chalice import Chalice

app = Chalice(app_name="appname")

@app.route('/resource/{value}', methods=['PUT'])
def viewfunction(value):

pass

Parameters

• path (str) – The path to associate with the view function. The path should only
contain [a-zA-Z0-9._-] chars and curly braces for parts of the URL you would like
to capture. The path should not end in a trailing slash, otherwise a validation error will be
raised during deployment.

• methods (list) – Optional parameter that indicates which HTTP methods this view
function should accept. By default, only GET requests are supported. If you only wanted to
support POST requests, you would specify methods=[’POST’]. If you support multi-
ple HTTP methods in a single view function (methods=[’GET’, ’POST’]), you can
check the app.current_request.method attribute to see which HTTP method was
used when making the request.

• name (str) – Optional parameter to specify the name of the view function. You generally
do not need to set this value. The name of the view function is used as the default value
for the view name.

• authorizer (Authorizer) – Specify an authorizer to use for this view. Can
be an instance of CognitoUserPoolAuthorizer, CustomAuthorizer or
IAMAuthorizer.

• content_types (str) – A list of content types to accept for this view. By default
application/json is accepted. If this value is specified, then chalice will reject
any incoming request that does not match the provided list of content types with a 415
Unsupported Media Type response.

• api_key_required (boolean) – Optional parameter to specify whether the method
required a valid API key.

• cors – Specify if CORS is supported for this view. This can either by a boolean
value, None, or an instance of CORSConfig. Setting this value is set to True gives
similar behavior to enabling CORS in the AWS Console. This includes injecting the
Access-Control-Allow-Origin header to have a value of * as well as adding
an OPTIONS method to support preflighting requests. If you would like more control over
how CORS is configured, you can provide an instance of CORSConfig.

authorizer(name, **options)
Register a built-in authorizer.

from chalice import Chalice, AuthResponse

app = Chalice(app_name="appname")

@app.authorizer(ttl_seconds=30)
def my_auth(auth_request):

Validate auth_request.token, and then:
return AuthResponse(routes=['/'], principal_id='username')

84 Chapter 15. API Reference

Python Serverless Microframework for AWS, Release 1.15.1

@app.route('/', authorizer=my_auth)
def viewfunction(value):

pass

Parameters

• ttl_seconds – The number of seconds to cache this response. Subsequent requests that
require this authorizer will use a cached response if available. The default is 300 seconds.

• execution_role – An optional IAM role to specify when invoking the Lambda func-
tion associated with the built-in authorizer.

schedule(expression, name=None)
Register a scheduled event that’s invoked on a regular schedule. This will create a lambda function associ-
ated with the decorated function. It will also schedule the lambda function to be invoked with a scheduled
CloudWatch Event.

See Scheduled Events for more information.

@app.schedule('cron(15 10 ? * 6L 2002-2005)')
def cron_handler(event):

pass

@app.schedule('rate(5 minutes)')
def rate_handler(event):

pass

@app.schedule(Rate(5, unit=Rate.MINUTES))
def rate_obj_handler(event):

pass

@app.schedule(Cron(15, 10, '?', '*', '6L', '2002-2005'))
def cron_obj_handler(event):

pass

Parameters

• expression – The schedule expression to use for the CloudWatch event rule. This
value can either be a string value or an instance of type ScheduleExpression, which
is either a Cron or Rate object. If a string value is provided, it will be provided directly
as the ScheduleExpression value in the PutRule API call.

• name – The name of the function to use. This name is combined with the chalice app
name as well as the stage name to create the entire lambda function name. This parameter
is optional. If it is not provided, the name of the python function will be used.

on_cw_event(pattern, name=None)
Create a lambda function and configure it to be invoked whenever an event that matches the given pattern
flows through CloudWatch Events or Event Bridge.

Parameters

• pattern – The event pattern to use to filter subscribed events. See the CloudWatch
Events docs for examples https://amzn.to/2OlqZso

• name – The name of the function to create. This name is combined with the chalice app
name as well as the stage name to create the entire lambda function name. This parameter
is optional. If it is not provided, the name of the python function will be used.

15.1. Chalice 85

https://docs.aws.amazon.com/AmazonCloudWatchEvents/latest/APIReference/API_PutRule.html#API_PutRule_RequestSyntax
https://amzn.to/2OlqZso

Python Serverless Microframework for AWS, Release 1.15.1

on_s3_event(bucket, events=None, prefix=None, suffix=None, name=None)
Create a lambda function and configure it to be automatically invoked whenever an event happens on an
S3 bucket.

Warning: You can’t use the chalice package command when using the on_s3_event deco-
rator. This is because CFN does not support configuring an existing S3 bucket.

See S3 Events for more information.

This example shows how you could implement an image resizer that’s triggered whenever an object is
uploaded to the images/ prefix of an S3 bucket (e.g s3://mybucket/images/house.jpg).

@app.on_s3_event('mybucket', events=['s3:ObjectCreated:Put'],
prefix='images/', suffix='.jpg')

def resize_image(event):
with tempfile.NamedTemporaryFile('w') as f:

s3.download_file(event.bucket, event.key, f.name)
resize_image(f.name)
s3.upload_file(event.bucket, 'resized/%s' % event.key, f.name)

Parameters

• bucket – The name of the S3 bucket. This bucket must already exist.

• events – A list of strings indicating the events that should trigger the lambda function.
See Supported Event Types for the full list of strings you can provide. If this option is not
provided, a default of [’s3:ObjectCreated:*’] is used, which will configure the
lambda function to be invoked whenever a new object is created in the S3 bucket.

• prefix – An optional key prefix. This specifies that the lambda function should only
be invoked if the key starts with this prefix (e.g. prefix=’images/’). Note that this
value is not a glob (e.g. images/*), it is a literal string match for the start of the key.

• suffix – An optional key suffix. This specifies that the lambda function should only
be invoked if the key name ends with this suffix (e.g. suffix=’.jpg’). Note that this
value is not a glob (e.g. *.txt), it is a literal string match for the end of the key.

• name – The name of the function to use. This name is combined with the chalice app
name as well as the stage name to create the entire lambda function name. This parameter
is optional. If it is not provided, the name of the python function will be used.

on_sns_message(topic, name=None)
Create a lambda function and configure it to be automatically invoked whenever an SNS message is pub-
lished to the specified topic.

See SNS Events for more information.

This example prints the subject and the contents of the message whenever something publishes to the sns
topic of mytopic. In this example, the input parameter is of type SNSEvent.

app.debug = True

@app.on_sns_message(topic='mytopic')
def handler(event):

app.log.info("SNS subject: %s", event.subject)
app.log.info("SNS message: %s", event.message)

Parameters

86 Chapter 15. API Reference

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html#supported-notification-event-types

Python Serverless Microframework for AWS, Release 1.15.1

• topic – The name or ARN of the SNS topic you want to subscribe to.

• name – The name of the function to use. This name is combined with the chalice app
name as well as the stage name to create the entire lambda function name. This parameter
is optional. If it is not provided, the name of the python function will be used.

on_sqs_message(queue, batch_size=1, name=None)
Create a lambda function and configure it to be automatically invoked whenever a message is published to
the specified SQS queue.

The lambda function must accept a single parameter which is of type SQSEvent.

If the decorated function returns without raising any exceptions then Lambda will automatically delete
the SQS messages associated with the SQSEvent. You don’t need to manually delete messages. If any
exception is raised, Lambda won’t delete any messages, and the messages will become available once the
visibility timeout has been reached. Note that for batch sizes of more than one, either the entire batch
succeeds and all the messages in the batch are deleted by Lambda, or the entire batch fails. The default
batch size is 1. See the Using AWS Lambda with Amazon SQS for more information on how Lambda
integrates with SQS.

See the SQS Events topic guide for more information on using SQS in Chalice.

app.debug = True

@app.on_sqs_message(queue='myqueue')
def handler(event):

app.log.info("Event: %s", event.to_dict())
for record in event:

app.log.info("Message body: %s", record.body)

Parameters

• queue – The name of the SQS queue you want to subscribe to. This is the name of the
queue, not the ARN or Queue URL.

• batch_size – The maximum number of messages to retrieve when polling for SQS
messages. The event parameter can have multiple SQS messages associated with it. This is
why the event parameter passed to the lambda function is iterable. The batch size controls
how many messages can be in a single event.

• name – The name of the function to use. This name is combined with the chalice app
name as well as the stage name to create the entire lambda function name. This parameter
is optional. If it is not provided, the name of the python function will be used.

lambda_function(name=None)
Create a pure lambda function that’s not connected to anything.

See Pure Lambda Functions for more information.

Parameters name – The name of the function to use. This name is combined with the chalice
app name as well as the stage name to create the entire lambda function name. This parameter
is optional. If it is not provided, the name of the python function will be used.

register_blueprint(blueprint, name_prefix=None, url_prefix=None)
Register a Blueprint to a Chalice app. See Blueprints for more information.

Parameters

• blueprint – The Blueprint to register to the app.

15.1. Chalice 87

https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

Python Serverless Microframework for AWS, Release 1.15.1

• name_prefix – An optional name prefix that’s added to all the resources specified in
the blueprint.

• url_prefix – An optional url prefix that’s added to all the routes defined the Blueprint.
This allows you to set the root mount point for all URLs in a Blueprint.

on_ws_connect(event)
Create a Websocket API connect event handler.

Parameters event – The WebsocketEvent received to indicate a new connection has
been registered with API Gateway. The identifier of this connection is under the
WebsocketEvent.connection_id attribute.

see Websockets for more information.

on_ws_message(event)
Create a Websocket API message event handler.

Parameters event – The WebsocketEvent received to indicate API Gateway received a
message from a connected client. The identifier of the client that sent the message is under the
WebsocketEvent.connection_id attribute. The content of the message is available
in the WebsocketEvent.body attribute.

see Websockets for more information.

on_ws_disconnect(event)
Create a Websocket API disconnect event handler.

Parameters event – The WebsocketEvent received to indicate an existing connection
has been disconnected from API Gateway. The identifier of this connection is under the
WebsocketEvent.connection_id attribute.

see Websockets for more information.

15.2 Request

class Request
A class that represents the current request. This is mapped to the app.current_request object.

@app.route('/objects/{key}', methods=['GET', 'PUT'])
def myobject(key):

request = app.current_request
if request.method == 'PUT':

handle PUT request
pass

elif request.method == 'GET':
handle GET request
pass

query_params
A dict of the query params for the request. This value is None if no query params were provided in the
request.

headers
A dict of the request headers.

uri_params
A dict of the captured URI params. This value is None if no URI params were provided in the request.

88 Chapter 15. API Reference

Python Serverless Microframework for AWS, Release 1.15.1

method
The HTTP method as a string.

json_body
The parsed JSON body (json.loads(raw_body)). This value will only be non-None if the Content-
Type header is application/json, which is the default content type value in chalice.

raw_body
The raw HTTP body as bytes. This is useful if you need to calculate a checksum of the HTTP body.

context
A dict of additional context information.

stage_vars
A dict of configuration for the API Gateway stage.

to_dict()
Convert the Request object to a dictionary. This is useful for debugging purposes. This dictionary is
guaranteed to be JSON serializable so you can return this value from a chalice view.

15.3 Response

class Response(body, headers=None, status_code=200)
A class that represents the response for the view function. You can optionally return an instance of this class
from a view function if you want complete control over the returned HTTP response.

from chalice import Chalice, Response

app = Chalice(app_name='custom-response')

@app.route('/')
def index():

return Response(body='hello world!',
status_code=200,
headers={'Content-Type': 'text/plain'})

New in version 0.6.0.

body
The HTTP response body to send back. This value must be a string.

headers
An optional dictionary of HTTP headers to send back. This is a dictionary of header name to header value,
e.g {’Content-Type’: ’text/plain’}

status_code
The integer HTTP status code to send back in the HTTP response.

15.4 Authorization

Each of these classes below can be provided using the authorizer argument for an
@app.route(authorizer=...) call:

15.3. Response 89

Python Serverless Microframework for AWS, Release 1.15.1

authorizer = CognitoUserPoolAuthorizer(
'MyPool', header='Authorization',
provider_arns=['arn:aws:cognito:...:userpool/name'])

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"secure": True}

class CognitoUserPoolAuthorizer(name, provider_arns, header=’Authorization’)
New in version 0.8.1.

name
The name of the authorizer.

provider_arns
The Cognito User Pool arns to use.

header
The header where the auth token will be specified.

class IAMAuthorizer
New in version 0.8.3.

class CustomAuthorizer(name, authorizer_uri, ttl_seconds, header=’Authorization’)
New in version 0.8.1.

name
The name of the authorizer.

authorizer_uri
The URI of the lambda function to use for the custom authorizer. This usually has the form
arn:aws:apigateway:{region}:lambda:path/2015-03-31/functions/{lambda_arn}/invocations.

ttl_seconds
The number of seconds to cache the returned policy from a custom authorizer.

header
The header where the auth token will be specified.

15.4.1 Built-in Authorizers

These classes are used when defining built-in authorizers in Chalice.

class AuthRequest(auth_type, token, method_arn)
An instance of this class is passed as the first argument to an authorizer defined via @app.authorizer().
You generally do not instantiate this class directly.

auth_type
The type of authentication

token
The authorization token. This is usually the value of the Authorization header.

method_arn
The ARN of the API gateway being authorized.

class AuthResponse(routes, principal_id, context=None)

routes
A list of authorized routes. Each element in the list can either by a string route such as “/foo/bar” or an

90 Chapter 15. API Reference

Python Serverless Microframework for AWS, Release 1.15.1

instance of AuthRoute. If you specify the URL as a string, then all supported HTTP methods will be
authorized. If you want to specify which HTTP methods are allowed, you can use AuthRoute. If you
want to specify that all routes and HTTP methods are supported you can use the wildcard value of "*":
AuthResponse(routes=[’*’], ...)

principal_id
The principal id of the user.

context
An optional dictionary of key value pairs. This dictionary will be accessible in the
app.current_request.context in all subsequent authorized requests for this user.

class AuthRoute(path, methods)
This class be used in the routes attribute of a AuthResponse instance to get fine grained control over which
HTTP methods are allowed for a given route.

path
The allowed route specified as a string

methods
A list of allowed HTTP methods.

15.5 APIGateway

class APIGateway
This class is used to control how API Gateway interprets Content-Type headers in both requests and re-
sponses.

There is a single instance of this class attached to each Chalice object under the api attribute.

cors
Global cors configuration. If a route-level cors configuration is not provided, or is None then this con-
figuration will be used. By default it is set to False. This can either be True, False, or an instance
of the CORSConfig class. This makes it easy to enable CORS for your entire application by setting
app.api.cors = True.

New in version 1.12.1.

default_binary_types
The value of default_binary_types are the Content-Types that are considered binary
by default. This value should not be changed, instead you should modify the binary_types
list to change the behavior of a content type. Its value is: application/octet-stream,
application/x-tar, application/zip, audio/basic, audio/ogg, audio/mp4,
audio/mpeg, audio/wav, audio/webm, image/png, image/jpg, image/jpeg,
image/gif, video/ogg, video/mpeg, video/webm.

binary_types
The value of binary_types controls how API Gateway interprets requests and responses as detailed
below.

If an incoming request has a Content-Type header value that is present in the binary_types list
it will be assumed that its body is a sequence of raw bytes. You can access these bytes by accessing the
app.current_request.raw_body property.

If an outgoing response from Chalice has a header Content-Type that matches one of the
binary_types its body must be a bytes type object. It is important to note that originating request
must have the Accept header for the same type as the Content-Type on the response. Otherwise a
400 error will be returned.

15.5. APIGateway 91

Python Serverless Microframework for AWS, Release 1.15.1

This value can be modified to change what types API Gateway treats as binary. The easiest way to do this
is to simply append new types to the list.

app.api.binary_types.append('application/my-binary-data')

Keep in mind that there can only be a total of 25 binary types at a time and Chalice by default has a list of
16 types. It is recommended if you are going to make extensive use of binary types to reset the list to the
exact set of content types you will be using. This can easily be done by reassigning the whole list.

app.api.binary_types = [
'application/octet-stream',
'application/my-binary-data',

]

Implementation Note: API Gateway and Lambda communicate through a JSON event which is encoded
using UTF-8. The raw bytes are temporarily encoded using base64 when being passed between API
Gateway and Lambda. In the worst case this encoding can cause the binary body to be inflated up to 4/3
its original size. Lambda only accepts an event up to 6mb, which means even if your binary data was not
quite at that limit, with the base64 encoding it may exceed that limit. This will manifest as a 502 Bad
Gateway error.

15.6 WebsocketAPI

class WebsocketAPI
This class is used to send messages to websocket clients connected to an API Gateway Websocket API.

session
A boto3 Session that will be used to send websocket messages to clients. Any custom configuration can
be set through a botocore session. This must be manually set before websocket features can be used.

import botocore
from boto3.session import Session
from chalice import Chalice

app = Chalice('example')
session = botocore.session.Session()
session.set_config_variable('retries', {'max_attempts': 0})
app.websocket_api.session = Session(botocore_session=session)

configure(domain_name, stage)
Configure prepares the WebsocketAPI to call the send() method. Without first calling this method
calls to send()will fail with the message WebsocketAPI needs to be configured before
sending messages.. This is because a boto3 apigatewaymanagementapi client must be
created from the session with a custom endpoint in order to properly communicate with our API
Gateway WebsocketAPI. This method is called on your behalf before each of the websocket handlers:
on_ws_connect, on_ws_message, on_ws_disconnect. This ensures that the send() method
is available in each of those handlers.

send(connection_id, message)
requires boto3>=1.9.91

Method to send a message to a client. The connection_id is the unique identifier of the socket
to send the message to. The message must be a utf-8 string.

If the socket is disconnected it raises a WebsocketDisconnectedError error.

close(connection_id)
requires boto3>=1.9.221

92 Chapter 15. API Reference

Python Serverless Microframework for AWS, Release 1.15.1

Method to close a WebSocket connection. The connection_id is the unique identifier of the
socket to close.

If the socket is already disconnected it raises a WebsocketDisconnectedError error.

info(connection_id)
requires boto3>=1.9.221

Method to get info about a WebSocket. The connection_id is the unique identifier of the socket
to get info about.

The following is an example of the format this method returns:

{
'ConnectedAt': datetime(2015, 1, 1),
'Identity': {

'SourceIp': 'string',
'UserAgent': 'string'

},
'LastActiveAt': datetime(2015, 1, 1)

}

If the socket is disconnected it raises a WebsocketDisconnectedError error.

class WebsocketDisconnectedError
An exception raised when a message is sent to a websocket that has disconnected.

connection_id
The unique identifier of the websocket that was disconnected.

15.7 CORS

class CORSConfig(allow_origin=’*’, allow_headers=None, expose_headers=None, max_age=None, al-
low_credentials=None)

CORS configuration to attach to a route, or globally on app.api.cors.

from chalice import CORSConfig
cors_config = CORSConfig(

allow_origin='https://foo.example.com',
allow_headers=['X-Special-Header'],
max_age=600,
expose_headers=['X-Special-Header'],
allow_credentials=True

)

@app.route('/custom_cors', methods=['GET'], cors=cors_config)
def supports_custom_cors():

return {'cors': True}

New in version 0.8.1.

allow_origin
The value of the Access-Control-Allow-Origin to send in the response. Keep in mind that
even though the Access-Control-Allow-Origin header can be set to a string that is a space
separated list of origins, this behavior does not work on all clients that implement CORS. You should
only supply a single origin to the CORSConfig object. If you need to supply multiple origins you will
need to define a custom handler for it that accepts OPTIONS requests and matches the Origin header
against a whitelist of origins. If the match is successful then return just their Origin back to them in the
Access-Control-Allow-Origin header.

15.7. CORS 93

Python Serverless Microframework for AWS, Release 1.15.1

allow_headers
The list of additional allowed headers. This list is added to list of built in allowed headers:
Content-Type, X-Amz-Date, Authorization, X-Api-Key, X-Amz-Security-Token.

expose_headers
A list of values to return for the Access-Control-Expose-Headers:

max_age
The value for the Access-Control-Max-Age

allow_credentials
A boolean value that sets the value of Access-Control-Allow-Credentials.

15.8 Event Sources

New in version 1.0.0b1.

class Rate(value, unit)
An instance of this class can be used as the expression value in the Chalice.schedule() method:

@app.schedule(Rate(5, unit=Rate.MINUTES))
def handler(event):

pass

Examples:

Run every minute.
Rate(1, unit=Rate.MINUTES)

Run every 2 hours.
Rate(2, unit=Rate.HOURS)

value
An integer value that presents the amount of time to wait between invocations of the scheduled event.

unit
The unit of the provided value attribute. This can be either Rate.MINUTES, Rate.HOURS, or
Rate.DAYS.

MINUTES, HOURS, DAYS
These values should be used for the unit attribute.

class Cron(minutes, hours, day_of_month, month, day_of_week, year)
An instance of this class can be used as the expression value in the Chalice.schedule() method.

@app.schedule(Cron(15, 10, '?', '*', '6L', '2002-2005'))
def handler(event):

pass

It provides more capabilities than the Rate class. There are a few limits:

•You can’t specify day_of_month and day_of_week fields in the same Cron expression. If you specify
a value in one of the fields, you must use a ? in the other.

•Cron expressions that lead to rates faster than 1 minute are not supported.

For more information, see the API docs page.

Examples:

94 Chapter 15. API Reference

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.html#CronExpressions

Python Serverless Microframework for AWS, Release 1.15.1

Run at 10:00am (UTC) every day.
Cron(0, 10, '*', '*', '?', '*')

Run at 12:15pm (UTC) every day.
Cron(15, 12, '*', '*', '?', '*')

Run at 06:00pm (UTC) every Monday through Friday.
Cron(0, 18, '?', '*', 'MON-FRI', '*')

Run at 08:00am (UTC) every 1st day of the month.
Cron(0, 8, 1, '*', '?', '*')

Run every 15 minutes.
Cron('0/15', '*', '*', '*', '?', '*')

Run every 10 minutes Monday through Friday.
Cron('0/10', '*', '?', '*', 'MON-FRI', '*')

Run every 5 minutes Monday through Friday between
08:00am and 5:55pm (UTC).
Cron('0/5', '8-17', '?', '*', 'MON-FRI', '*')

class CloudWatchEvent
This is the input argument for a scheduled or CloudWatch events.

@app.schedule('rate(1 hour)')
def every_hour(event: CloudWatchEvent):

pass

In the code example above, the event argument is of type CloudWatchEvent, which will have the following
attributes.

version
By default, this is set to 0 (zero) in all events.

account
The 12-digit number identifying an AWS account.

region
Identifies the AWS region where the event originated.

detail
For CloudWatch events this will be the event payload. For scheduled events, this will be an empty dictio-
nary.

detail_type
For scheduled events, this value will be "Scheduled Event".

source
Identifies the service that sourced the event. All events sourced from within AWS will begin with “aws.”
Customer-generated events can have any value here as long as it doesn’t begin with “aws.” We recommend
the use of java package-name style reverse domain-name strings.

For scheduled events, this will be aws.events.

time
The event timestamp, which can be specified by the service originating the event. If the event spans a time
interval, the service might choose to report the start time, so this value can be noticeably before the time
the event is actually received.

15.8. Event Sources 95

Python Serverless Microframework for AWS, Release 1.15.1

event_id
A unique value is generated for every event. This can be helpful in tracing events as they move through
rules to targets, and are processed.

resources
This JSON array contains ARNs that identify resources that are involved in the event. Inclusion of these
ARNs is at the discretion of the service.

For scheduled events, this will include the ARN of the CloudWatch rule that triggered this event.

context
A Lambda context object that is passed to the handler by AWS Lambda. This is useful if you need the
AWS request ID for tracing, or any other data in the context object.

to_dict()
Return the original event dictionary provided from Lambda. This is useful if you need direct access to
the lambda event, for example if a new key is added to the lambda event that has not been mapped as an
attribute to the CloudWatchEvent object. Example:

{'account': '123457940291',
'detail': {},
'detail-type': 'Scheduled Event',
'id': '12345678-b9f1-4667-9c5e-39f98e9a6113',
'region': 'us-west-2',
'resources': ['arn:aws:events:us-west-2:123457940291:rule/testevents-dev-every_minute'],
'source': 'aws.events',
'time': '2017-06-30T23:28:38Z',
'version': '0'}

class S3Event
This is the input argument for an S3 event.

@app.on_s3_event(bucket='mybucket')
def event_handler(event: S3Event):

app.log.info("Event received for bucket: %s, key %s",
event.bucket, event.key)

In the code example above, the event argument is of type S3Event, which will have the following attributes.

bucket
The S3 bucket associated with the event.

key
The S3 key name associated with the event. The original key name in the S3 event payload is URL
encoded. However, this key attribute automatically URL decodes the key name for you. If you need
access to the original URL encoded key name, you can access it through the to_dict() method.

context
A Lambda context object that is passed to the handler by AWS Lambda. This is useful if you need the
AWS request ID for tracing, or any other data in the context object.

to_dict()
Return the original event dictionary provided from Lambda. This is useful if you need direct access to
the lambda event, for example if a new key is added to the lambda event that has not been mapped as an
attribute to the S3Event object. Note that this event is not modified in any way. This means that the key
name of the S3 object is URL encoded, which is the way that S3 sends this value to Lambda.

class SNSEvent
This is the input argument for an SNS event handler.

96 Chapter 15. API Reference

https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html

Python Serverless Microframework for AWS, Release 1.15.1

@app.on_sns_message(topic='mytopic')
def event_handler(event: SNSEvent):

app.log.info("Message received with subject: %s, message: %s",
event.subject, event.message)

In the code example above, the event argument is of type SNSEvent, which will have the following attributes.

subject
The subject of the SNS message that was published.

message
The string value of the SNS message that was published.

context
A Lambda context object that is passed to the handler by AWS Lambda. This is useful if you need the
AWS request ID for tracing, or any other data in the context object.

to_dict()
Return the original event dictionary provided from Lambda. This is useful if you need direct access to
the lambda event, for example if a new key is added to the lambda event that has not been mapped as an
attribute to the SNSEvent object.

class SQSEvent
This is the input argument for an SQS event handler.

@app.on_sqs_message(queue='myqueue')
def event_handler(event: SQSEvent):

app.log.info("Event: %s", event.to_dict())

In the code example above, the event argument is of type SQSEvent. An SQSEvent can have multiple sqs
messages associated with it. To access the multiple messages, you can iterate over the SQSEvent.

__iter__()
Iterate over individual SQS messages associated with the event. Each element in the iterable is of type
SQSRecord.

context
A Lambda context object that is passed to the handler by AWS Lambda. This is useful if you need the
AWS request ID for tracing, or any other data in the context object.

to_dict()
Return the original event dictionary provided from Lambda. This is useful if you need direct access to
the lambda event, for example if a new key is added to the lambda event that has not been mapped as an
attribute to the SQSEvent object.

class SQSRecord
Represents a single SQS record within an SQSEvent.

body
The body of the SQS message.

receipt_handle
The receipt handle associated with the message. This is useful if you need to manually delete an SQS
message to account for partial failures.

context
A Lambda context object that is passed to the handler by AWS Lambda.

15.8. Event Sources 97

https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html

Python Serverless Microframework for AWS, Release 1.15.1

to_dict()
Return the original dictionary associated with the given message. This is useful if you need direct access
to the lambda event.

15.9 Blueprints

class Blueprint(import_name)
An object used for grouping related handlers together. This is primarily used as a mechanism for organizing your
lambda handlers. Any decorator methods defined in the Chalice object are also defined on a Blueprint
object. You can register a blueprint to a Chalice app using the Chalice.register_blueprint()method.

The import_name is the module in which the Blueprint is defined. It is used to construct the appropriate
handler string when creating the Lambda functions associated with a Blueprint. This is typically the __name__
attribute:mybp = Blueprint(__name__).

See Blueprints for more information.

In ./app.py

from chalice import Chalice
from chalicelib import myblueprint

app = Chalice(app_name='blueprints')
app.register_blueprint(myblueprint)

In chalicelib/myblueprint.py

from chalice import Blueprint

myblueprint = Blueprint(__name__)

@myblueprint.route('/')
def index():

return {'hello': 'world'}

15.10 Websockets

class WebsocketEvent
Event object event that is passed as the sole arugment to any handler function decorated with one of the three
websocket related handlers: on_ws_connect, on_ws_disconnect, on_ws_message.

domain_name
The domain name of the endpoint for the API Gateway Websocket API.

stage
The API Gateway stage of the Websocket API.

connection_id
A handle that uniquely identifies a connection with API Gateway.

body
The message body received. This is only populated on the on_ws_message otherwise it will be set to
None.

98 Chapter 15. API Reference

Python Serverless Microframework for AWS, Release 1.15.1

json_body
The parsed JSON body (json.loads(body)) of the message. If the body is not JSON parsable then
using this attribute will raise a ValueError.

See Websockets for more information.

15.10. Websockets 99

Python Serverless Microframework for AWS, Release 1.15.1

100 Chapter 15. API Reference

CHAPTER 16

Tutorials

16.1 Websocket Tutorials

16.1.1 Echo Server Example

An echo server is a simple server that echos any message it receives back to the client that sent it.

First install a copy of Chalice in a fresh environment, create a new project and cd into the directory:

$ pip install -U chalice
$ chalice new-project echo-server
$ cd echo-server

Our Chalice application will need boto3 as a dependency for both API Gateway to send websocket messages. Let’s
add a boto3 to the requirements.txt file:

$ echo "boto3>=1.9.91" > requirements.txt

Now that the requirement has been added. Let’s install it locally since our next script will need it as well:

$ pip install -r requirements.txt

Next replace the contents of the app.py file with the code below.

Listing 16.1: app.py
1 from boto3.session import Session
2

3 from chalice import Chalice
4 from chalice import WebsocketDisconnectedError
5

6 app = Chalice(app_name="echo-server")
7 app.websocket_api.session = Session()
8 app.experimental_feature_flags.update([
9 'WEBSOCKETS'

10])
11

12

13 @app.on_ws_message()
14 def message(event):
15 try:
16 app.websocket_api.send(
17 connection_id=event.connection_id,

101

Python Serverless Microframework for AWS, Release 1.15.1

18 message=event.body,
19)
20 except WebsocketDisconnectedError as e:
21 pass # Disconnected so we can't send the message back.

Stepping through this app line by line, the first thing to note is that we need to import and instantiate a boto3 session.
This session is manually assigned to app.websocket_api.session. This is needed because in order to send
websocket responses to API Gateway we need to construct a boto3 client. Chalice does not take a direct dependency
on boto3 or botocore, so we need to provide the Session ourselves.

from boto3.session import Session
app.websocket_api.session = Session()

Next we enable the experimental feature WEBSOCKETS. Websockets are an experimental feature and are sub-
ject to API changes. This includes all aspects of the Websocket API exposted in Chalice. Including any pub-
lic members of app.websocket_api, and the three decorators on_ws_connect, on_ws_message, and
on_ws_disconnect.

app.experimental_feature_flags.update([
'WEBSOCKETS'

])

To register a websocket handler, and cause Chalice to deploy an API Gateway Websocket API we use the
app.on_ws_message() decorator. The event parameter here is a wrapper object with some convenience pa-
rameters attached. The most useful are event.connection_id and event.body. The connection_id is
an API Gateway specific identifier that allows you to refer to the connection that sent the message. The body is the
content of the message.

@app.on_ws_message()
def message(event):

Since this is an echo server, the message handler simply reads the content it received on the socket, and rewrites it
back to the same socket. To send a message to a socket we call app.websocket_api.send(connection_id,
message). In this case, we just use the same connection_id we got the message from, and use the body we
got from the event as the message to send.

app.websocket_api.send(
connection_id=event.connection_id,
message=event.body,

)

Finally, we catch the exception WebsocketDisconnectedError which is raised by
app.websocket_api.send if the provided connection_id is not connected anymore. In our case
this doesn’t really matter since we don’t have anything tracking our connections. The error has a connection_id
property that contains the offending connection id.

except WebsocketDisconnectedError as e:
pass # Disconnected so we can't send the message back.

Now that we understand the code, lets deploy it with chalice deploy:

$ chalice deploy
Creating deployment package.
Creating IAM role: echo-server-dev
Creating lambda function: echo-server-dev-websocket_message
Creating websocket api: echo-server-dev-websocket-api
Resources deployed:
- Lambda ARN: arn:aws:lambda:region:0123456789:function:echo-server-dev-websocket_message
- Websocket API URL: wss://{websocket_api_id}.execute-api.region.amazonaws.com/api/

102 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

To test out the echo server we will use the websocket-client package. You install it from PyPI:

$ pip install websocket-client

After deploying the Chalice app the output will contain a URL for connecting to the websocket API labeled: -
Websocket API URL:. The websocket-client package installs a command line tool called wsdump.py
which can be used to test websocket echo server:

$ wsdump.py wss://{websocket_api_id}.execute-api.region.amazonaws.com/api/
Press Ctrl+C to quit
> foo
< foo
> bar
< bar
> foo bar baz
< foo bar baz
>

Every message sent to the server (lines that start with >) result in a message sent to us (lines that start with <) with the
same content.

If something goes wrong, you can check the chalice error logs using the following command:

$ chalice logs -n websocket_message

Note: If you encounter an Internal Server Error here it is likely that you forgot to include boto3>=1.9.91 in the
requirements.txt file.

To tear down the example. Just run:

$ chalice delete
Deleting Websocket API: {websocket_api_id}
Deleting function: arn:aws:lambda:us-west-2:0123456789:function:echo-server-dev-websocket_message
Deleting IAM role: echo-server-dev

16.1.2 Chat Server Example

Note: This example is for illustration purposes and does not represent best practices.

A simple chat server example application. This example will walk through deploying a chat application with separate
chat rooms and nicknames. It uses a DynamoDB table to store state like connection IDs between websocket messages.

First install a copy of Chalice in a fresh environment, create a new project and cd into the directory:

$ pip install -U chalice
$ chalice new-project chalice-chat-example
$ cd chalice-chat-example

Our Chalice application will need boto3 as a dependency for both DynamoDB access and in order to communicate
back with API Gateway to send websocket messages. Let’s add a boto3 to the requirements.txt file:

$ echo "boto3>=1.9.91" > requirements.txt

Now that the requirement has been added. Let’s install it locally since our next script will need it as well:

16.1. Websocket Tutorials 103

Python Serverless Microframework for AWS, Release 1.15.1

$ pip install -r requirements.txt

Unlike our previous example where we used chalice deploy, we will use chalice package to create a
CloudFormation template. The AWS CLI will be used to deploy the template. To install the AWS CLI run the
command:

$ pip install -U awscli

Starting in Chalice 1.10, the package command has a --merge-template argument that allows us to merge in a
custom JSON file to the generated CloudFormation template. Since Chalice does not have any built-in support for
DynamoDB currently, we will make a resources.json file with the DynamoDB definition. The template file will
set the environment variable TABLE in all our Lambda functions as a CloudFormatiion reference to the DynamoDB
table. Finally, the template will also override our IAM policy with a custom one to allow all the DynamoDB operations
our application will need.

Below is the JSON file that contains all of our custom Cloudformation.

Listing 16.2: resources.json
{

"Resources": {
"ChaliceChatTable": {
"Type" : "AWS::DynamoDB::Table",
"Properties" : {

"AttributeDefinitions" : [
{
"AttributeName": "PK",
"AttributeType": "S"

},
{
"AttributeName": "SK",
"AttributeType": "S"

}
],
"KeySchema" : [
{
"AttributeName" : "PK",
"KeyType" : "HASH"

},{
"AttributeName" : "SK",
"KeyType" : "RANGE"

}
],
"GlobalSecondaryIndexes": [
{
"IndexName" : "ReverseLookup",
"KeySchema" : [
{
"AttributeName" : "SK",
"KeyType" : "HASH"

},
{
"AttributeName" : "PK",
"KeyType" : "RANGE"

}
],
"Projection" : {
"ProjectionType": "ALL"

104 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

},
"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

}
}

],
"ProvisionedThroughput" : {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

},
"TableName": "ChaliceChat"

}
},
"WebsocketConnect": {
"Properties": {

"Environment": {
"Variables": {

"TABLE": {"Ref": "ChaliceChatTable"}
}

}
}

},
"WebsocketMessage": {

"Properties": {
"Environment": {
"Variables": {

"TABLE": {"Ref": "ChaliceChatTable"}
}

}
}

},
"WebsocketDisconnect": {
"Properties": {
"Environment": {
"Variables": {

"TABLE": {"Ref": "ChaliceChatTable"}
}

}
}

},
"DefaultRole": {

"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Sid": "",
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"

},
"Action": "sts:AssumeRole"

}
]

},
"Policies": [

16.1. Websocket Tutorials 105

Python Serverless Microframework for AWS, Release 1.15.1

{
"PolicyName": "DefaultRolePolicy",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents"

],
"Resource": "arn:aws:logs:*:*:*"

},
{
"Effect": "Allow",
"Action": [
"execute-api:ManageConnections"

],
"Resource": "arn:aws:execute-api:*:*:*/@connections/*"

},
{
"Effect": "Allow",
"Action": [
"dynamodb:DeleteItem",
"dynamodb:PutItem",
"dynamodb:GetItem",
"dynamodb:UpdateItem",
"dynamodb:Query",
"dynamodb:Scan"

],
"Resource": [
{
"Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:${AWS::AccountId}:table/${ChaliceChatTable}"

},
{
"Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:${AWS::AccountId}:table/${ChaliceChatTable}/index/ReverseLookup"

}
]

}
]

}
}

]
}

}
}

}

The current directory layout should now look like this:

$ tree -a .
.
-- .chalice
| -- config.json
-- .gitignore
-- app.py
-- resources.json

106 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

-- requirements.txt

1 directory, 5 files

Next let’s fill out the app.py file since it is pretty simple. Most of this example code is contained in the
chalicelib/ directory.

Listing 16.3: chalice-chat-example/app.py
from boto3.session import Session

from chalice import Chalice

from chalicelib import Storage
from chalicelib import Sender
from chalicelib import Handler

app = Chalice(app_name="chalice-chat-example")
app.websocket_api.session = Session()
app.experimental_feature_flags.update([

'WEBSOCKETS'
])

STORAGE = Storage.from_env()
SENDER = Sender(app, STORAGE)
HANDLER = Handler(STORAGE, SENDER)

@app.on_ws_connect()
def connect(event):

STORAGE.create_connection(event.connection_id)

@app.on_ws_disconnect()
def disconnect(event):

STORAGE.delete_connection(event.connection_id)

@app.on_ws_message()
def message(event):

HANDLER.handle(event.connection_id, event.body)

Similar to the previous example. We need to use boto3 to construct a Session and pass it to
app.websocket_api.session. We opt into the usage of the WEBSOCKET experimental feature. Most of the
actual work is done in some classes that we import from chalicelib/. These classes are detailed below, and the
various parts are explained in comments and doc strings. In addition to the previous example, we register a handler
for on_ws_connect and on_ws_disconnect to handle events from API gateway when a new socket is trying
to connect, or an existing socket is disconnected.

Finally before being able to deploy and test the app out, we need to fill out the chalicelib directory. This is the bulk of
the app and it is explained inline in comments. Create a new directory called chalicelib and inside that directory
create an __init__.py file and fill it out with the following file.

Listing 16.4: chalice-chat-example/chalicelib/__init__.py
import os

16.1. Websocket Tutorials 107

Python Serverless Microframework for AWS, Release 1.15.1

import boto3
from boto3.dynamodb.conditions import Key

from chalice import WebsocketDisconnectedError

class Storage(object):
"""An abstraction to interact with the DynamoDB Table."""
def __init__(self, table):

"""Initialize Storage object

:param table: A boto3 dynamodb Table resource object.
"""
self._table = table

@classmethod
def from_env(cls):

"""Create table from the environment.

The environment variable TABLE is present for a deployed application
since it is set in all of the Lambda functions by a CloudFormation
reference. We default to '', which will happen when we run
``chalice package`` since it loads the application, and no
environment variable has been set. For local testing, a value should
be manually set in the environment if '' will not suffice.
"""
table_name = os.environ.get('TABLE', '')
table = boto3.resource('dynamodb').Table(table_name)
return cls(table)

def create_connection(self, connection_id):
"""Create a new connection object in the dtabase.

When a new connection is created, we create a stub for
it in the table. The stub uses a primary key of the
connection_id and a sort key of username_. This translates
to a connection with an unset username. The first message
sent over the wire from the connection is to be used as the
username, and this entry will be re-written.

:param connection_id: The connection id to write to
the table.

"""
self._table.put_item(

Item={
'PK': connection_id,
'SK': 'username_',

},
)

def set_username(self, connection_id, old_name, username):
"""Set the username.

The SK entry that goes with this connection id that starts
with username_ is taken to be the username. The previous
entry needs to be deleted, and a new entry needs to be
written.

108 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

:param connection_id: Connection id of the user trying to
change their name.

:param old_name: The original username. Since this is part of
the key, it needs to be deleted and re-created rather than
updated.

:param username: The new username the user wants.
"""
self._table.delete_item(

Key={
'PK': connection_id,
'SK': 'username_%s' % old_name,

},
)
self._table.put_item(

Item={
'PK': connection_id,
'SK': 'username_%s' % username,

},
)

def list_rooms(self):
"""Get a list of all rooms that exist.

Scan through the table looking for SKs that start with room_
which indicates a room that a user is in. Collect a unique set
of those and return them.
"""
r = self._table.scan()
rooms = set([item['SK'].split('_', 1)[1] for item in r['Items']

if item['SK'].startswith('room_')])
return rooms

def set_room(self, connection_id, room):
"""Set the room a user is currently in.

The room a user is in is in the form of an SK that starts with
room_ prefix.

:param connection_id: The connection id to move to a room.

:param room: The room name to join.
"""
self._table.put_item(

Item={
'PK': connection_id,
'SK': 'room_%s' % room,

},
)

def remove_room(self, connection_id, room):
"""Remove a user from a room.

The room a user is in is in the form of an SK that starts with
room_ prefix. To leave a room we need to delete this entry.

:param connection_id: The connection id to move to a room.

16.1. Websocket Tutorials 109

Python Serverless Microframework for AWS, Release 1.15.1

:param room: The room name to join.
"""
self._table.delete_item(

Key={
'PK': connection_id,
'SK': 'room_%s' % room,

},
)

def get_connection_ids_by_room(self, room):
"""Find all connection ids that go to a room.

This is needed whenever we broadcast to a room. We collect all
their connection ids so we can send messages to them. We use a
ReverseLookup table here which inverts the PK, SK relationship
creating a partition called room_{room}. Everything in that
partition is a connection in the room.

:param room: Room name to get all connection ids from.
"""
r = self._table.query(

IndexName='ReverseLookup',
KeyConditionExpression=(

Key('SK').eq('room_%s' % room)
),
Select='ALL_ATTRIBUTES',

)
return [item['PK'] for item in r['Items']]

def delete_connection(self, connection_id):
"""Delete a connection.

Called when a connection is disconnected and all its entries need
to be deleted.

:param connection_id: The connection partition to delete from
the table.

"""
try:

r = self._table.query(
KeyConditionExpression=(

Key('PK').eq(connection_id)
),
Select='ALL_ATTRIBUTES',

)
for item in r['Items']:

self._table.delete_item(
Key={

'PK': connection_id,
'SK': item['SK'],

},
)

except Exception as e:
print(e)

def get_record_by_connection(self, connection_id):
"""Get all the properties associated with a connection.

110 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

Each connection_id creates a partition in the table with multiple
SK entries. Each SK entry is in the format {property}_{value}.
This method reads all those records from the database and puts them
all into dictionary and returns it.

:param connection_id: The connection to get properties for.
"""
r = self._table.query(

KeyConditionExpression=(
Key('PK').eq(connection_id)

),
Select='ALL_ATTRIBUTES',

)
r = {

entry['SK'].split('_', 1)[0]: entry['SK'].split('_', 1)[1]
for entry in r['Items']

}
return r

class Sender(object):
"""Class to send messages over websockets."""
def __init__(self, app, storage):

"""Initialize a sender object.

:param app: A Chalice application object.

:param storage: A Storage object.
"""
self._app = app
self._storage = storage

def send(self, connection_id, message):
"""Send a message over a websocket.

:param connection_id: API Gateway Connection ID to send a
message to.

:param message: The message to send to the connection.
"""
try:

Call the chalice websocket api send method
self._app.websocket_api.send(connection_id, message)

except WebsocketDisconnectedError as e:
If the websocket has been closed, we delete the connection
from our database.
self._storage.delete_connection(e.connection_id)

def broadcast(self, connection_ids, message):
""""Send a message to multiple connections.

:param connection_id: A list of API Gateway Connection IDs to
send the message to.

:param message: The message to send to the connections.
"""
for cid in connection_ids:

self.send(cid, message)

16.1. Websocket Tutorials 111

Python Serverless Microframework for AWS, Release 1.15.1

class Handler(object):
"""Handler object that handles messages received from a websocket.

This class implements the bulk of our app behavior.
"""
def __init__(self, storage, sender):

"""Initialize a Handler object.

:param storage: Storage object to interact with database.

:param sender: Sender object to send messages to websockets.
"""
self._storage = storage
self._sender = sender
Command table to translate a string command name into a
method to call.
self._command_table = {

'help': self._help,
'nick': self._nick,
'join': self._join,
'room': self._room,
'quit': self._quit,
'ls': self._list,

}

def handle(self, connection_id, message):
"""Entry point for our application.

:param connection_id: Connection id that the message came from.

:param message: Message we got from the connection.
"""
First look the user up in the database and get a record for it.
record = self._storage.get_record_by_connection(connection_id)
if record['username'] == '':

If the user does not have a username, we assume that the message
is the username they want and we call _handle_login_message.
self._handle_login_message(connection_id, message)

else:
Otherwise we assume the user is logged in. So we call
a method to handle the message. We pass along the
record we loaded from the database so we don't need to
again.
self._handle_message(connection_id, message, record)

def _handle_login_message(self, connection_id, message):
"""Handle a login message.

The message is the username to give the user. Re-write the
database entry for this user to reset their username from ''
to {message}. Once that is done send a message back to the user
to confirm the name choice. Also send a /help prompt.
"""
self._storage.set_username(connection_id, '', message)
self._sender.send(

connection_id,
'Using nickname: %s\nType /help for list of commands.' % message

112 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

)

def _handle_message(self, connection_id, message, record):
""""Handle a message from a connected and logged in user.

If the message starts with a / it's a command. Otherwise its a
text message to send to all rooms in the room.

:param connection_id: Connection id that the message came from.

:param message: Message we got from the connection.

:param record: A data record about the sender.
"""
if message.startswith('/'):

self._handle_command(connection_id, message[1:], record)
else:

self._handle_text(connection_id, message, record)

def _handle_command(self, connection_id, message, record):
"""Handle a command message.

Check the command name and look it up in our command table.
If there is an entry, we call that method and pass along
the connection_id, arguments, and the loaded record.

:param connection_id: Connection id that the message came from.

:param message: Message we got from the connection.

:param record: A data record about the sender.
"""
args = message.split(' ')
command_name = args.pop(0).lower()
command = self._command_table.get(command_name)
if command:

command(connection_id, args, record)
else:

If no command method is found, send an error message
back to the user.
self._sender(

connection_id, 'Unknown command: %s' % command_name)

def _handle_text(self, connection_id, message, record):
"""Handle a raw text message.

:param connection_id: Connection id that the message came from.

:param message: Message we got from the connection.

:param record: A data record about the sender.
"""
if 'room' not in record:

If the user is not in a room send them an error message
and return early.
self._sender.send(

connection_id, 'Cannot send message if not in chatroom.')
return

16.1. Websocket Tutorials 113

Python Serverless Microframework for AWS, Release 1.15.1

Collect a list of connection_ids in the same room as the message
sender.
connection_ids = self._storage.get_connection_ids_by_room(

record['room'])
Prefix the message with the sender's name.
message = '%s: %s' % (record['username'], message)
Broadcast the new message to everyone in the room.
self._sender.broadcast(connection_ids, message)

def _help(self, connection_id, _message, _record):
"""Send the help message.

Build a help message and send back to the same connection.

:param connection_id: Connection id that the message came from.
"""
self._sender.send(

connection_id,
'\n'.join([

'Commands available:',
' /help',
' Display this message.',
' /join {chat_room_name}',
' Join a chatroom named {chat_room_name}.',
' /nick {nickname}',
' Change your name to {nickname}. If no {nickname}',
' is provided then your current name will be printed',
' /room',
' Print out the name of the room you are currently ',
' in.',
' /ls',
' If you are in a room, list all users also in the',
' room. Otherwise, list all rooms.',
' /quit',
' Leave current room.',
'',
'If you are in a room, raw text messages that do not start ',
'with a / will be sent to everyone else in the room.',

]),
)

def _nick(self, connection_id, args, record):
"""Change or check nickname (username).

:param connection_id: Connection id that the message came from.

:param args: Argument list that came after the command.

:param record: A data record about the sender.
"""
if not args:

If a nickname argument was not provided, we just want to
report the current nickname to the user.
self._sender.send(

connection_id, 'Current nickname: %s' % record['username'])
return

The first argument is assumed to be the new desired nickname.
nick = args[0]

114 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

Change the username from record['username'] to nick in the storage
layer.
self._storage.set_username(connection_id, record['username'], nick)
Send a message to the requestor to confirm the nickname change.
self._sender.send(connection_id, 'Nickname is: %s' % nick)
Get the room the user is in.
room = record.get('room')
if room:

If the user was in a room, announce to the room they have
changed their name. Don't send this me sage to the user since
they already got a name change message.
room_connections = self._storage.get_connection_ids_by_room(room)
room_connections.remove(connection_id)
self._sender.broadcast(

room_connections,
'%s is now known as %s.' % (record['username'], nick))

def _join(self, connection_id, args, record):
"""Join a chat room.

:param connection_id: Connection id that the message came from.

:param args: Argument list. The first argument should be the
name of the room to join.

:param record: A data record about the sender.
"""
Get the room name to join.
room = args[0]
Call quit to leave the current room we are in if there is any.
self._quit(connection_id, '', record)
Get a list of connections in the target chat room.
room_connections = self._storage.get_connection_ids_by_room(room)
Join the target chat room.
self._storage.set_room(connection_id, room)
Send a message to the requestor that they have joined the room.
At the same time send an announcement to everyone who was already
in the room to alert them of the new user.
self._sender.send(

connection_id, 'Joined chat room "%s"' % room)
message = '%s joined room.' % record['username']
self._sender.broadcast(room_connections, message)

def _room(self, connection_id, _args, record):
"""Report the name of the current room.

:param connection_id: Connection id that the message came from.

:param record: A data record about the sender.
"""
if 'room' in record:

If the user is in a room send them the name back.
self._sender.send(connection_id, record['room'])

else:
If the user is not in a room. Tell them so, and how to
join a room.
self._sender.send(

connection_id,

16.1. Websocket Tutorials 115

Python Serverless Microframework for AWS, Release 1.15.1

'Not currently in a room. Type /join {room_name} to do so.'
)

def _quit(self, connection_id, _args, record):
"""Quit from a room.

:param connection_id: Connection id that the message came from.

:param record: A data record about the sender.
"""
if 'room' not in record:

If the user is not in a room there is nothing to do.
return

Find the current room name, and delete that entry from
the database.
room_name = record['room']
self._storage.remove_room(connection_id, room_name)
Send a message to the user to inform them they left the room.
self._sender.send(

connection_id, 'Left chat room "%s"' % room_name)
Tell everyone in the room that the user has left.
self._sender.broadcast(

self._storage.get_connection_ids_by_room(room_name),
'%s left room.' % record['username'],

)

def _list(self, connection_id, _args, record):
"""Show a context dependent listing.

:param connection_id: Connection id that the message came from.

:param record: A data record about the sender.
"""
room = record.get('room')
if room:

If the user is in a room, get a listing of everyone
in the room.
result = [

self._storage.get_record_by_connection(c_id)['username']
for c_id in self._storage.get_connection_ids_by_room(room)

]
else:

If they are not in a room. Get a listing of all rooms
currently open.
result = self._storage.list_rooms()

Send the result list back to the requestor.
self._sender.send(connection_id, '\n'.join(result))

The final directory layout should be

$ tree -a .
.
-- .chalice
| -- config.json
-- .gitignore
-- app.py
-- chalicelib
| -- __init__.py

116 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

-- resources.json
-- requirements.txt

2 directories, 6 files

Deploying our app with CloudFormation requires 3 steps. First we use Chalice to package our app into a JSON
CloudFormation template:

$ chalice package --merge-template resources.json out

This will result in a new directory called out being created, inside which there is a sam.json file. This template
contains our Chalice app as a CloudFormation template, merged with our resources.json template.

Next we use the AWS CLI to package this template, and prepare it for deployment. In order for this to work you will
need to replace $BUCKET with the name of a bucket you control:

$ aws cloudformation package --template-file out/sam.json --s3-bucket $BUCKET --output-template-file out/template.yml

Once this is complete, a new template should be located at out/template.yml this is the final CloudFormation
template which is ready for deployment. Deploying it with the AWS CLI can be done with the following command:

$ aws cloudformation deploy --template-file out/template.yml --stack-name ChaliceChat --capabilities CAPABILITY_IAM

This command should wait awhile, and once it exits the app should be ready. To get the websocket connection URL,
we can use the AWS CLI again to check the stack output WebsocketConnectEndpointURL:

$ aws cloudformation describe-stacks --stack-name ChaliceChat --query "Stacks[0].Outputs[?OutputKey=='WebsocketConnectEndpointURL'].OutputValue" --output text
wss://{id}.execute-api.{region}.amazonaws.com/api/

Once deployed we can take the result of the previous command and connect to it using wsdump.py. Below is a
sample of two running clients, the first message sent to the server is used as the client’s username.

Listing 16.5: client-1
$ wsdump.py wss://{id}.execute-api.{region}.amazonaws.com/api/
Press Ctrl+C to quit
> John
< Using nickname: John
Type /help for list of commands.
> /help
< Commands available:

/help
Display this message.

/join {chat_room_name}
Join a chatroom named {chat_room_name}.

/nick {nickname}
Change your name to {nickname}. If no {nickname}
is provided then your current name will be printed

/room
Print out the name of the room you are currently
in.

/ls
If you are in a room, list all users also in the
room. Otherwise, list all rooms.

/quit
Leave current room.

If you are in a room, raw text messages that do not start
with a / will be sent to everyone else in the room.

16.1. Websocket Tutorials 117

Python Serverless Microframework for AWS, Release 1.15.1

> /join chalice
< Joined chat room "chalice"
< Jenny joined room.
> Hi
< John: Hi
< Jenny is now known as JennyJones.
> /quit
< Left chat room "chalice"
> /ls
< chalice
> Ctrl-D

Listing 16.6: client-2
$ wsdump.py wss://{id}.execute-api.{region}.amazonaws.com/api/
Press Ctrl+C to quit
> Jenny
< Using nickname: Jenny
Type /help for list of commands.
> /help
< Commands available:

/help
Display this message.

/join {chat_room_name}
Join a chatroom named {chat_room_name}.

/nick {nickname}
Change your name to {nickname}. If no {nickname}
is provided then your current name will be printed

/room
Print out the name of the room you are currently
in.

/ls
If you are in a room, list all users also in the
room. Otherwise, list all rooms.

/quit
Leave current room.

If you are in a room, raw text messages that do not start
with a / will be sent to everyone else in the room.
> /join chalice
< Joined chat room "chalice"
> /ls
< John
Jenny
< John: Hi
> /nick JennyJones
< Nickname is: JennyJones
< John left room.
> /ls
< JennyJones
> /room
< chalice
> /nick
< Current nickname: JennyJones
> Ctrl-D

To delete the resources you can run use the AWS CLI to delete the stack:

118 Chapter 16. Tutorials

Python Serverless Microframework for AWS, Release 1.15.1

$ aws cloudformation delete-stack --stack-name ChaliceChat

16.1. Websocket Tutorials 119

Python Serverless Microframework for AWS, Release 1.15.1

120 Chapter 16. Tutorials

CHAPTER 17

Upgrade Notes

17.1 Upgrade Notes

This document provides additional documentation on upgrading your version of chalice. If you’re just interested in
the high level changes, see the CHANGELOG.rst) file.

17.1.1 1.2.0

This release features a rewrite of the Chalice deployer (#604). This is a backwards compatible change, and should
not have any noticeable changes with deployments with the exception of fixing deployer bugs (e.g. https://github.
com/aws/chalice/issues/604). This code path affects the chalice deploy, chalice delete, and chalice
package commands.

While this release is backwards compatible, you will notice several changes when you upgrade to version 1.2.0.

The output of chalice deploy has changed in order to give more details about the resources it creates along with
a more detailed summary at the end:

$ chalice deploy
Creating deployment package.
Creating IAM role: myapp-dev
Creating lambda function: myapp-dev-foo
Creating lambda function: myapp-dev
Creating Rest API
Resources deployed:

- Lambda ARN: arn:aws:lambda:us-west-2:12345:function:myapp-dev-foo
- Lambda ARN: arn:aws:lambda:us-west-2:12345:function:myapp-dev
- Rest API URL: https://abcd.execute-api.us-west-2.amazonaws.com/api/

Also, the files used to store deployed values has changed. These files are used internally by the chalice
deploy/delete commands and you typically do not interact with these files directly. It’s mentioned here in case
you notice new files in your .chalice directory. Note that these files are not part of the public interface of Chalice
and are documented here for completeness and to help with debugging issues.

In versions < 1.2.0, the value of deployed resources was stored in .chalice/deployed.json and looked like
this:

{
"dev": {
"region": "us-west-2",
"api_handler_name": "demoauth4-dev",
"api_handler_arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev",

121

https://github.com/aws/chalice/blob/master/CHANGELOG.rst
https://github.com/aws/chalice/issues/604
https://github.com/aws/chalice/issues/604
https://github.com/aws/chalice/issues/604

Python Serverless Microframework for AWS, Release 1.15.1

"rest_api_id": "abcd",
"lambda_functions": {

"myapp-dev-foo": {
"type": "pure_lambda",
"arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev-foo"

}
},
"chalice_version": "1.1.1",
"api_gateway_stage": "api",
"backend": "api"

},
"prod": {...}

}

In version 1.2.0, the deployed resources are split into multiple files, one file per chalice stage. These files
are in the .chalice/deployed/<stage.json>, so if you had a dev and a prod chalice stage you’d have
.chalice/deployed/dev.json and .chalice/deployed/prod.json. The schema has also changed
and looks like this:

$ cat .chalice/deployed/dev.json
{

"schema_version": "2.0",
"resources": [
{

"role_name": "myapp-dev",
"role_arn": "arn:aws:iam::123:role/myapp-dev",
"name": "default-role",
"resource_type": "iam_role"

},
{

"lambda_arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev-foo",
"name": "foo",
"resource_type": "lambda_function"

},
{

"lambda_arn": "arn:aws:lambda:us-west-2:123:function:myapp-dev",
"name": "api_handler",
"resource_type": "lambda_function"

},
{

"name": "rest_api",
"rest_api_id": "abcd",
"rest_api_url": "https://abcd.execute-api.us-west-2.amazonaws.com/api",
"resource_type": "rest_api"

}
],
"backend": "api"

}

When you run chalice deploy for the first time after upgrading to version 1.2.0, chalice will automatically
converted .chalice/deployed.json over to the format as you deploy a given stage.

Warning: Once you upgrade to 1.2.0, chalice will only update the new
.chalice/deployed/<stage>.json. This means you cannot downgrade to earlier versions of chalice
unless you manually update .chalice/deployed.json as well.

The chalice package command has also been updated to use the deployer. This results in several changes

122 Chapter 17. Upgrade Notes

Python Serverless Microframework for AWS, Release 1.15.1

compared to the previous version:

• Pure lambdas are supported

• Scheduled events are supported

• Parity between the behavior of chalice deploy and chalice package

As part of this change, the CFN resource names have been updated to use CamelCase names. Previously, chalice
converted your python function names to CFN resource names by removing all non alphanumeric characters and
appending an md5 checksum, e.g my_function -> myfunction3bfc. With this new packager update, the
resource name would be converted as my_function -> MyFunction. Note, the Outputs section renames
unchanged in order to preserve backwards compatibility. In order to fix parity issues with chalice deploy and
chalice package, we now explicitly create an IAM role resource as part of the default configuration.

17.1.2 1.0.0b2

The url parameter names and the function argument names must match. Previously, the routing code would use
positional args handler(*args) to invoke a view function. In this version, kwargs are now used instead:
handler(**view_args). For example, this code will no longer work:

@app.route('/{a}/{b}')
def myview(first, second)

return {}

The example above must be updated to:

@app.route('/{a}/{b}')
def myview(a, b)

return {}

Now that functions are invoked with kwargs, the order doesn’t matter. You may also write the above view function as:

@app.route('/{a}/{b}')
def myview(b, a)

return {}

This was done to have consistent behavior with other web frameworks such as Flask.

17.1.3 1.0.0b1

The Chalice.define_authorizer method has been removed. This has been deprecated since v0.8.1. See
Authorization for updated information on configuring authorizers in Chalice as well as the original deprecation notice
in the 0.8.1 upgrade notes.

The optional deprecated positional parameter in the chalice deploy command for specifying the API Gateway
stage has been removed. If you want to specify the API Gateway stage, you can use the --api-gateway-stage
option in the chalice deploy command:

Deprecated and removed in 1.0.0b1
$ chalice deploy prod

Equivalent and updated way to specify an API Gateway stage:
$ chalice deploy --api-gateway-stage prod

17.1. Upgrade Notes 123

Python Serverless Microframework for AWS, Release 1.15.1

17.1.4 0.9.0

The 0.9.0 release changed the type of app.current_request.raw_body to always be of type bytes(). This
only affects users that were using python3. Previously you would get a type str(), but with the introduction of
binary content type support, the raw_body attribute was made to consistently be of type bytes().

17.1.5 0.8.1

The 0.8.1 changed the preferred way of specifying authorizers for view functions. You now specify either an instance
of chalice.CognitoUserPoolAuthorizer or chalice.CustomAuthorizer to an @app.route()
function using the authorizer argument.

Deprecated:

@app.route('/user-pools', methods=['GET'], authorizer_name='MyPool')
def authenticated():

return {"secure": True}

app.define_authorizer(
name='MyPool',
header='Authorization',
auth_type='cognito_user_pools',
provider_arns=['arn:aws:cognito:...:userpool/name']

)

Equivalent, and preferred way

from chalice import CognitoUserPoolAuthorizer

authorizer = CognitoUserPoolAuthorizer(
'MyPool', header='Authorization',
provider_arns=['arn:aws:cognito:...:userpool/name'])

@app.route('/user-pools', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"secure": True}

The define_authorizer is still available, but is now deprecated and will be removed in future versions of chalice.
You can also use the new authorizer argument to provider a CustomAuthorizer:

from chalice import CustomAuthorizer

authorizer = CustomAuthorizer(
'MyCustomAuth', header='Authorization',
authorizer_uri=('arn:aws:apigateway:region:lambda:path/2015-03-01'

'/functions/arn:aws:lambda:region:account-id:'
'function:FunctionName/invocations'))

@app.route('/custom-auth', methods=['GET'], authorizer=authorizer)
def authenticated():

return {"secure": True}

17.1.6 0.7.0

The 0.7.0 release adds several major features to chalice. While the majority of these features are introduced in a
backwards compatible way, there are a few backwards incompatible changes that were made in order to support these
new major features.

124 Chapter 17. Upgrade Notes

https://github.com/aws/chalice/issues/348

Python Serverless Microframework for AWS, Release 1.15.1

Separate Stages

Prior to this version, chalice had a notion of a “stage” that corresponded to an API gateway stage. You can create
and deploy a new API gateway stage by running chalice deploy <stage-name>. In 0.7.0, stage support was
been reworked such that a chalice stage is a completely separate set of AWS resources. This means that if you have
two chalice stages, say dev and prod, then you will have two separate sets of AWS resources, one set per stage:

• Two API Gateway Rest APIs

• Two separate Lambda functions

• Two separate IAM roles

The Chalice Stages doc has more details on the new chalice stages feature. This section highlights the key differences
between the old stage behavior and the new chalice stage functionality in 0.7.0. In order to ease transition to this new
model, the following changes were made:

• A new --stage argument was added to the deploy, logs, url, generate-sdk, and package com-
mands. If this value is specified and the stage does not exist, a new chalice stage with that name will be created
for you.

• The existing form chalice deploy <stage-name> has been deprecated. The command will still work
in version 0.7.0, but a deprecation warning will be printed to stderr.

• If you want the pre-existing behavior of creating a new API gateway stage (while using the same Lambda
function), you can use the --api-gateway-stage argument. This is the replacement for the deprecated
form chalice deploy <stage-name>.

• The default stage if no --stage option is provided is dev. By defaulting to a dev stage, the pre-existing
behavior of not specifying a stage name, e.g chalice deploy, chalice url, etc. will still work exactly
the same.

• A new stages key is supported in the .chalice/config.json. This allows you to specify configuration
specific to a chalice stage. See the Configuration File doc for more information about stage specific configura-
tion.

• Setting autogen_policy to false will result in chalice looking for a IAM policy file named
.chalice/policy-<stage-name>.json. Previously it would look for a file named
.chalice/policy.json. You can also explicitly set this value to In order to ease transition, chal-
ice will check for a .chalice/policy.json file when depoying to the dev stage. Support for
.chalice/policy.json will be removed in future versions of chalice and users are encouraged to switch
to the stage specific .chalice/policy-<stage-name>.json files.

See the Chalice Stages doc for more details on the new chalice stages feature.

Note, the AWS resource names it creates now have the form ‘‘<app-name>-<stage-name>‘‘, e.g. ‘‘myapp-dev‘‘,
‘‘myapp-prod‘‘.

We recommend using the new stage specific resource names. However, If you would like to use the existing resource
names for a specific stage, you can create a .chalice/deployed.json file that specifies the existing values:

{
"dev": {
"backend": "api",
"api_handler_arn": "lambda-function-arn",
"api_handler_name": "lambda-function-name",
"rest_api_id": "your-rest-api-id",
"api_gateway_stage": "dev",
"region": "your region (e.g us-west-2)",
"chalice_version": "0.7.0",

17.1. Upgrade Notes 125

Python Serverless Microframework for AWS, Release 1.15.1

}
}

This file is discussed in the next section.

Deployed Values

In version 0.7.0, the way deployed values are stored and retrieved has changed. In prior versions, only the
lambda_arn was saved, and its value was written to the .chalice/config.json file. Any of other deployed
values that were needed (for example the API Gateway rest API id) was dynamically queried by assuming the resource
names matches the app name. In this version of chalice, a separate .chalice/deployed.json file is written on
every deployement which contains all the resources that have been created. While this should be a transparent change,
you may noticed issues if you run commands such as chalice url and chalice logs without first deploying.
To fix this issue, run chalice deploy and version 0.7.0 of chalice so a .chalice/deployed.json will be
created for you.

Authorizer Changes

The ‘‘authorizer_id‘‘ and ‘‘authorization_type‘‘ args are no longer supported in ‘‘@app.route(...)‘‘ calls.

They have been replaced with an authorizer_name parameter and an app.define_authorizer method.

This version changed the internals of how an API gateway REST API is created. Prior to 0.7.0, the AWS SDK
for Python was used to make the appropriate service API calls to API gateway include create_rest_api and
put_method / put_method_response for each route. In version 0.7.0, this internal mechanism was changed
to instead generate a swagger document. The rest api is then created or updated by calling import_rest_api
or put_rest_api and providing the swagger document. This simplifies the internals and also unifies the code
base for the newly added chalice package command (which uses a swagger document internally). One con-
sequence of this change is that the entire REST API must be defined in the swagger document. With the previ-
ous authorizer_id parameter, you would create/deploy a rest api, create your authorizer, and then provide that
authorizer_id in your @app.route calls. Now they must be defined all at once in the app.py file:

app = chalice.Chalice(app_name='demo')

@app.route('/auth-required', authorizer_name='MyUserPool')
def foo():

return {}

app.define_authorizer(
name='MyUserPool',
header='Authorization',
auth_type='cognito_user_pools',
provider_arns=['arn:aws:cognito:...:userpool/name']

)

17.1.7 0.6.0

This version changed how the internals of how API gateway resources are created by chalice. The integration type
changed from AWS to AWS_PROXY. This was to enable additional functionality, notable to allows users to provide
non-JSON HTTP responses and inject arbitrary headers to the HTTP responses. While this change to the internals is
primarily internal, there are several user-visible changes.

• Uncaught exceptions with app.debug = False (the default value) will result in a more generic
InternalServerError error. The previous behavior was to return a ChaliceViewError.

126 Chapter 17. Upgrade Notes

Python Serverless Microframework for AWS, Release 1.15.1

• When you enabled debug mode via app.debug = True, the HTTP response will contain the python stack
trace as the entire request body. This is to improve the readability of stack traces. For example:

$ http https://endpoint/dev/
HTTP/1.1 500 Internal Server Error
Content-Length: 358
Content-Type: text/plain

Traceback (most recent call last):
File "/var/task/chalice/app.py", line 286, in __call__

response = view_function(*function_args)
File "/var/task/app.py", line 12, in index

return a()
File "/var/task/app.py", line 16, in a

return b()
File "/var/task/app.py", line 19, in b

raise ValueError("Hello, error!")
ValueError: Hello, error!

• Content type validation now has error responses that match the same error response format used for other chalice
built in responses. Chalice was previously relying on API gateway to perform the content type validation. As
a result of the AWS_PROXY work, this logic has moved into the chalice handler and now has a consistent error
response:

$ http https://endpoint/dev/ 'Content-Type: text/plain'
HTTP/1.1 415 Unsupported Media Type
Content-Type: application/json

{
"Code": "UnsupportedMediaType",
"Message": "Unsupported media type: text/plain"

}

• The keys in the app.current_request.to_dict() now match the casing used by the AWS_PPROXY
lambda integration, which are lowerCamelCased. This method is primarily intended for introspection pur-
poses.

17.2 Indices and tables

• genindex

• search

17.2. Indices and tables 127

Python Serverless Microframework for AWS, Release 1.15.1

128 Chapter 17. Upgrade Notes

Index

Symbols
__iter__() (SQSEvent method), 97

A
account (CloudWatchEvent attribute), 95
allow_credentials (CORSConfig attribute), 94
allow_headers (CORSConfig attribute), 93
allow_origin (CORSConfig attribute), 93
api (Chalice attribute), 83
APIGateway (built-in class), 91
auth_type (AuthRequest attribute), 90
authorizer() (Chalice method), 84
authorizer_uri (CustomAuthorizer attribute), 90
AuthRequest (built-in class), 90
AuthResponse (built-in class), 90
AuthRoute (built-in class), 91

B
binary_types (APIGateway attribute), 91
Blueprint (built-in class), 98
body (Response attribute), 89
body (SQSRecord attribute), 97
body (WebsocketEvent attribute), 98
bucket (S3Event attribute), 96

C
Chalice (built-in class), 83
close(), 92
CloudWatchEvent (built-in class), 95
CognitoUserPoolAuthorizer (built-in class), 90
configure() (WebsocketAPI method), 92
connection_id (WebsocketDisconnectedError attribute),

93
connection_id (WebsocketEvent attribute), 98
context (AuthResponse attribute), 91
context (CloudWatchEvent attribute), 96
context (Request attribute), 89
context (S3Event attribute), 96
context (SNSEvent attribute), 97
context (SQSEvent attribute), 97

context (SQSRecord attribute), 97
cors (APIGateway attribute), 91
CORSConfig (built-in class), 93
Cron (built-in class), 94
current_request (Chalice attribute), 83
CustomAuthorizer (built-in class), 90

D
debug (Chalice attribute), 83
default_binary_types (APIGateway attribute), 91
detail (CloudWatchEvent attribute), 95
detail_type (CloudWatchEvent attribute), 95
domain_name (WebsocketEvent attribute), 98

E
event_id (CloudWatchEvent attribute), 95
expose_headers (CORSConfig attribute), 94

H
header (CognitoUserPoolAuthorizer attribute), 90
header (CustomAuthorizer attribute), 90
headers (Request attribute), 88
headers (Response attribute), 89

I
IAMAuthorizer (built-in class), 90
info(), 93

J
json_body (Request attribute), 89
json_body (WebsocketEvent attribute), 98

K
key (S3Event attribute), 96

L
lambda_context (Chalice attribute), 83
lambda_function() (Chalice method), 87

129

Python Serverless Microframework for AWS, Release 1.15.1

M
max_age (CORSConfig attribute), 94
message (SNSEvent attribute), 97
method (Request attribute), 88
method_arn (AuthRequest attribute), 90
methods (AuthRoute attribute), 91

N
name (CognitoUserPoolAuthorizer attribute), 90
name (CustomAuthorizer attribute), 90

O
on_cw_event() (Chalice method), 85
on_s3_event() (Chalice method), 85
on_sns_message() (Chalice method), 86
on_sqs_message() (Chalice method), 87
on_ws_connect() (Chalice method), 88
on_ws_disconnect() (Chalice method), 88
on_ws_message() (Chalice method), 88

P
path (AuthRoute attribute), 91
principal_id (AuthResponse attribute), 91
provider_arns (CognitoUserPoolAuthorizer attribute), 90

Q
query_params (Request attribute), 88

R
Rate (built-in class), 94
raw_body (Request attribute), 89
receipt_handle (SQSRecord attribute), 97
region (CloudWatchEvent attribute), 95
register_blueprint() (Chalice method), 87
Request (built-in class), 88
resources (CloudWatchEvent attribute), 96
Response (built-in class), 89
route() (Chalice method), 83
routes (AuthResponse attribute), 90

S
S3Event (built-in class), 96
schedule() (Chalice method), 85
send(), 92
session (WebsocketAPI attribute), 92
SNSEvent (built-in class), 96
source (CloudWatchEvent attribute), 95
SQSEvent (built-in class), 97
SQSRecord (built-in class), 97
stage (WebsocketEvent attribute), 98
stage_vars (Request attribute), 89
status_code (Response attribute), 89
subject (SNSEvent attribute), 97

T
time (CloudWatchEvent attribute), 95
to_dict() (CloudWatchEvent method), 96
to_dict() (Request method), 89
to_dict() (S3Event method), 96
to_dict() (SNSEvent method), 97
to_dict() (SQSEvent method), 97
to_dict() (SQSRecord method), 97
token (AuthRequest attribute), 90
ttl_seconds (CustomAuthorizer attribute), 90

U
unit (Rate attribute), 94
uri_params (Request attribute), 88

V
value (Rate attribute), 94
version (CloudWatchEvent attribute), 95

W
websocket_api (Chalice attribute), 83
WebsocketAPI (built-in class), 92
WebsocketDisconnectedError (built-in class), 93
WebsocketEvent (built-in class), 98

130 Index

	Quickstart and Tutorial
	Credentials
	Creating Your Project
	Deploying
	Next Steps

	Tutorial: URL Parameters
	Tutorial: Error Messages
	Tutorial: Additional Routing
	Tutorial: Request Metadata
	Tutorial: Request Content Types
	Tutorial: Customizing the HTTP Response
	Tutorial: GZIP compression for json
	Tutorial: CORS Support
	Tutorial: Policy Generation
	Manually Providing Policies
	Experimental Status

	Tutorial: Using Custom Authentication
	API Key
	Using AWS IAM
	Using Amazon Cognito User Pools
	Using Custom Authorizers

	Tutorial: Local Mode
	Deleting Your App
	Topics
	Routing
	Views
	Configuration File
	Multifile Support
	Logging
	SDK Generation
	Chalice Stages
	App Packaging
	Python Version Support
	Changing Python Runtime Versions
	AWS CloudFormation Support
	Terraform Support
	Authorization
	Lambda Event Sources
	Pure Lambda Functions
	Blueprints
	Websockets
	Continuous Deployment (CD)
	Experimental APIs

	API Reference
	Chalice
	Request
	Response
	Authorization
	APIGateway
	WebsocketAPI
	CORS
	Event Sources
	Blueprints
	Websockets

	Tutorials
	Websocket Tutorials

	Upgrade Notes
	Upgrade Notes
	Indices and tables

